Using response surface design to determine the optimal parameters of genetic algorithm and a case study

Ibrahim Kucukkoc, Aslan Deniz Karaoglan, Ramazan Yaman
2013 International Journal of Production Research  
Article title: Using response surface design to determine the optimal parameters of genetic algorithm and a case study Abstract: Genetic algorithms are efficient stochastic search techniques for approximating optimal solutions within complex search spaces and used widely to solve NP hard problems. This algorithm includes a number of parameters whose different levels affect the performance of the algorithm strictly. The general approach to determine the appropriate parameter combination of
more » ... c algorithm depends on too many trials of different combinations and the best one of the combinations that produces good results is selected for the program that would be used for problem solving. A few researchers studied on parameter optimisation of genetic algorithm. In this paper, response surface depended parameter optimisation is proposed to determine the optimal parameters of genetic algorithm. Results are tested for benchmark problems that is most common in mixed-model assembly line balancing problems of type-I (MMALBP-I). Genetic algorithms are efficient stochastic search techniques for approximating optimal solutions within complex search spaces and used widely to solve NP hard problems. This algorithm includes a number of parameters whose different levels affect the performance of the algorithm strictly. The general approach to determine the appropriate parameter combination of genetic algorithm depends on too many trials of different combinations and the best one of the combinations that produces good results is selected for the program that would be used for problem solving. A few researchers studied on parameter optimisation of genetic algorithm. In this paper, response surface depended parameter optimisation is proposed to determine the optimal parameters of genetic algorithm. Results are tested for benchmark problems that is most common in mixed-model assembly line balancing problems of type-I (MMALBP-I).
doi:10.1080/00207543.2013.784411 fatcat:56km4q2ppzaclfzjpkixj65ya4