Indexed linear logic and higher-order model checking

Charles Grellois, Paul-André Melliès
2015 Electronic Proceedings in Theoretical Computer Science  
In recent work, Kobayashi observed that the acceptance by an alternating tree automaton A of an infinite tree T generated by a higher-order recursion scheme G may be formulated as the typability of the recursion scheme G in an appropriate intersection type system associated to the automaton A. The purpose of this article is to establish a clean connection between this line of work and Bucciarelli and Ehrhard's indexed linear logic. This is achieved in two steps. First, we recast Kobayashi's
more » ... ast Kobayashi's result in an equivalent infinitary intersection type system where intersection is not idempotent anymore. Then, we show that the resulting type system is a fragment of an infinitary version of Bucciarelli and Ehrhard's indexed linear logic. While this work is very preliminary and does not integrate key ingredients of higher-order model-checking like priorities, it reveals an interesting and promising connection between higher-order model-checking and linear logic.
doi:10.4204/eptcs.177.4 fatcat:76shpi2nn5ckphb4myagjd54b4