Open Polar Server (OPS)—An Open Source Infrastructure for the Cryosphere Community

Weibo Liu, Kyle Purdon, Trey Stafford, John Paden, Xingong Li
2016 ISPRS International Journal of Geo-Information  
The Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas has collected approximately 1000 terabytes (TB) of radar depth sounding data over the Arctic and Antarctic ice sheets since 1993 in an effort to map the thickness of the ice sheets and ultimately understand the impacts of climate change and sea level rise. In addition to data collection, the storage, management, and public distribution of the dataset are also primary roles of the CReSIS. The Open Polar Server (OPS)
more » ... Polar Server (OPS) project developed a free and open source infrastructure to store, manage, analyze, and distribute the data collected by CReSIS in an effort to replace its current data storage and distribution approach. The OPS infrastructure includes a spatial database management system (DBMS), map and web server, JavaScript geoportal, and MATLAB application programming interface (API) for the inclusion of data created by the cryosphere community. Open source software including GeoServer, PostgreSQL, PostGIS, OpenLayers, ExtJS, GeoEXT and others are used to build a system that modernizes the CReSIS data distribution for the entire cryosphere community and creates a flexible platform for future development. Usability analysis demonstrates the OPS infrastructure provides an improved end user experience. In addition, interpolating glacier topography is provided as an application example of the system. mass balance of ice sheets in the Arctic and Antarctic, collects much-needed data relevant to ice sheets and the rapid changes they are undergoing. Large amounts of geospatial data have been collected or generated from remote sensors for the advanced monitoring and investigation of the polar environment at CReSIS. Since 1993, CReSIS, or precursor groups to CReSIS, have collected over 1000 TB of raw data in the Arctic and Antarctic using a suite of radars developed at the center. The delivery of this dataset is one of the core duties of CReSIS. As a distributor of such an important dataset to the cryosphere community, and to the broader field of climate research, simplifying the process of data retrieval for data users and streamlining the process of data creation for the scientists and staff at CReSIS are two important and unresolved goals. Over the last few decades, the implementation of spatial data infrastructure (SDI) has facilitated access to geospatial data for a large number of users [6] . The SDI offers an environment which enables a wide range of potential users to acquire and maintain geographic datasets easily in a secure, consistent, and complete manner [7] . It provides the opportunity to disseminate and share rich geo-information over the web, and to rapidly integrate and use geospatial datasets [8]. In the GIS (geographic information system) community, standards and free and open source software (FOSS) development falls under the umbrella of open GIS, which was initially promoted by the Open GIS Consortium [6,9,10]. Open source software tools, however, do not always work well in highly demanding systems because of the lack of official support and debugging issues [11], which makes it so that open source web GIS applications sometimes only serve as experiments. As a result, it is important to develop and test open source web GIS applications with real-world large geospatial data. Recently, several such infrastructures have been implemented. Gkatzoflias et al. [11] examined the development of an open source web GIS application which generates and distributes maps and files as part of an emission inventory system. Delipetrev et al. [12] developed a web application to manage, present, store, model and optimize geospatial water resources based on open source software. Zavala-Romero et al. [13] implemented the open source Open Web GIS (OWGIS) that can display multi-dimensional geospatial data from distinct map servers. Those web GIS applications showed the success of open source software tools in different research fields. Our research presents yet another example which shows that open source software and technologies could be used to develop a robust and integrative web application serving diverse geospatial data for the cryosphere research community based on the previous studies. In the cryosphere community, there are two primary data access systems: PolarGrid Cloud GIS ( and the National Snow and Ice Data Center (NSIDC) Operation Ice Bridge (OIB, However, the PolarGrid Cloud GIS is not open to public. The NSIDC OIB portal is mainly used to browse the polar data products, including flight reports and flight geometries, and users can use the File Transfer Protocol (FTP) site, OGC services and encodings such as WMS, WFS, GML, and KML to access NSIDC data products. In this work, the authors present a new system, Open Polar Server (OPS), which offers a resolution to the unresolved goals. The primary goal of this work is to develop a free and open source infrastructure capable of storing, managing, creating, analyzing, and distributing the dataset collected by CReSIS in a way that provides an improved experience for both the users and primary producers of the data. A secondary goal is to design the OPS in a way that allows the entire cryosphere community to provide new datasets for inclusion in the system. To achieve the secondary goal, special attention was paid to standardization and generalization of the custom OPS components. The motivation for this research, including the geospatial datasets and the data storage and distribution issues, is described in Section 2. The open-source architecture and development is discussed in Section 3. An evaluation on OPS is presented in Section 4. An example application of the data provided by the OPS is presented in Section 5. A summary of the research and possible future work is provided in Section 6.
doi:10.3390/ijgi5030032 fatcat:nwxb7nxxand4xbhsh5ng4yuv54