A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit <a rel="external noopener" href="https://arxiv.org/pdf/1909.13231v3.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
[article]
<span title="2020-07-01">2020</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
In this paper, we propose Test-Time Training, a general approach for improving the performance of predictive models when training and test data come from different distributions. We turn a single unlabeled test sample into a self-supervised learning problem, on which we update the model parameters before making a prediction. This also extends naturally to data in an online stream. Our simple approach leads to improvements on diverse image classification benchmarks aimed at evaluating robustness to distribution shifts.
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1909.13231v3">arXiv:1909.13231v3</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/edaruivkibf4dl4vfdymj65634">fatcat:edaruivkibf4dl4vfdymj65634</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200710060845/https://arxiv.org/pdf/1909.13231v3.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/6c/3c/6c3ce3ca050096439934737c1c6b8040e6208d37.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1909.13231v3" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>