
	

	

A Structured Method for Security Requirements Elicitation concerning the
Cloud Computing Domain

Kristian Beckers1, Maritta Heisel1, Isabelle Côté2, Ludger Goeke2, Selim Güler3

1paluno - The Ruhr Institute for Software Technology – University of Duisburg-Essen, Germany
{firstname.lastname}@paluno.uni-due.de

2 ITESYS Institute for Technical Systems GmbH, Dortmund, Germany
{firstname.lastname}@itesys.de

3 EASY SOFTWARE AG, Mülheim an der Ruhr, Germany
{firstname.lastname}@easy.de

Abstract. Cloud computing systems offer an attractive alternative to traditional IT-systems, because of
economic benefits that arise from the cloud’s scalable and flexible IT-resources. The benefits are of
particular interest for SME’s. The reason is that using Cloud Resources allows an SME to focus on its
core business rather than on IT-resources. However, numerous concerns about the security of cloud
computing services exist. Potential cloud customers have to be confident that the cloud services they
acquire are secure for them to use. Therefore, they have to have a clear set of security requirements
covering their security needs. Eliciting these requirements is a difficult task, because of the amount of
stakeholders and technical components to consider in a cloud environment.

Therefore, we propose a structured, pattern-based method supporting eliciting security requirements and
selecting security measures. The method guides potential cloud customers to model the application of
their business case in a cloud computing context using a pattern-based approach. Thus, a potential cloud
customer can instantiate our so-called Cloud System Analysis Pattern. Then, the information of the
instantiated pattern can be used to fill-out our textual security requirements patterns and individual
defined security requirement patterns, as well. The presented method is tool-supported. Our tool supports
the instantiation of the cloud system analysis pattern and automatically transfers the information from the
instance to the security requirements patterns. In addition, we have validation conditions that check e.g.,
if a security requirement refers to at least one element in the cloud. We illustrate our method using an
online-banking system as running example.

Keywords - security requirements engineering; security standards; ISO 27001; cloud computing;
requirements patterns

I. Introduction

It is hard to find the right cloud computing offer with regard to security, when one does not know what
right is. The definition of precise security requirements provides the means define this right with regard to
cloud security. After identifying the cloud security needs, one has to select security measures that fulfill
the requirements. We provide a structured method to address this problem, so that SME’s can use it with
little effort. We base the method on known security guidelines and standards like ISO 27001 to ensure a
state-of-the-art approach.

	

	

The term cloud computing describes a technology as well as a business model (Armbrust et al., 2009).
According to the National Institute of Standards and Technology (NIST), cloud computing systems can be
defined by the following properties (Mell & Grance, 2011): the cloud customer can require resources of
the cloud provider over broad network access and on-demand and pays only for the used capabilities.
Resources, i.e., storage, processing, memory, network bandwidth, and virtual machines, are combined
into a so-called pool. Using cloud computing services is thus an economic way of acquiring IT-resources.
The dynamic acquisition and scalability, yet paying only what was used, makes cloud computing an
interesting alternative for a large amount of potential customers. The pay-per-use model includes
guarantees such as availability or security for resources via customized Service Level Agreements (SLA)
(Vaquero et al., 2008). However, the customers are also hesitant to sign up with a cloud provider. In 2009,
the International Data Corporation3 conducted a survey to find out why customers are so hesitant. The
survey showed that the lack of trust in cloud security measures is at the top of the list why people avoid
using cloud services. The customers fear that managing and storing critical data and executing sensitive
IT-processes beyond their grasp has an impact on the security of their data and IT-processes, respectively.

To (re-)gain this trust some well-known cloud providers have started to certify their cloud computing
systems according to the ISO 27001 standard to show potential customers that they take their concerns,
e.g, considering security, seriously. Unfortunately, it is not always clear to customers what their security
requirements actually are.

Our approach aims at helping potential cloud customers to elicit their security requirements. We provide
patterns that result in a set of security requirements once they have been instantiated. The patterns are
embedded in a method that guides a potential cloud customer through the elicitation process in a
structured manner. The method uses an enhanced version of the Cloud System Analysis Pattern (CSAP)
introduced in (Beckers et al., 2011). It is possible to add security requirements patterns, if the patterns
from existing patterns do not suffice. Our method proposes to use the instantiated requirements patterns to
select security measures. We integrate published best practices in our method, e.g., from the BSI
recommendations (2012). In addition, we recommend to use existing catalogues of security controls in
this part of the method, e.g., from the ISO 27001 standard (2005).

We contribute a meta-model that specifies the structure of the CSAP. The meta-model enables us to
specify validation conditions to check, e.g., the consistency of the security requirements amongst each
other. In addition, we provide tool support for instantiating the cloud system analysis pattern as well as an
automatic transfer from the information of the instance to the security requirements patterns.

We use an online-banking system as running example to show the applicability of our approach.

The paper is structured as follows: In Sect. II, we briefly introduce the case study serving as a running
example throughout the remainder of this paper. With Sect. III, we portray our approach. Section IV
provides an overview of the technical realization of our current tool support. In Sect. V, we evaluate and
discuss our approach. We conclude the paper with Sects. VI stating related work and VII summarizing
our work and giving directions for future research.

II. Running Example

To illustrate our approach, we consider an online-banking system as running example. The bank institute,
as potential cloud customer, wants to expand its business by a structured scenario in form of an online-
banking service. To operate economically, the bank is inclined to use a cloud computing service for this
task.

The registered business address of the bank institute is within Germany. The bank conducts transactions
in Germany, the European Union (EU) and the United States of America (US). Therefore, it must abide
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3https://www-304.ibm.com/isv/library/pdfs/cloud idc.pdf	

	

	

by the rules and regulations issued by the affected countries as well as by those of the financial domain.
The online-banking service of the bank comprises a premium proposal aimed at VIP bank customers. This
proposal is a specific service level agreement between the bank and its VIP customers regarding the
availability of the service.

The bank identified the following requirements that should be covered by a cloud computing service:

• Data storage: Customer data such as account number, amount, and transaction log history are
stored in the cloud.

• Data processing: Transactions such as credit transfers are processed in the cloud.

• Role-based customer handling: The roles Bank Customer as well as VIP Bank Customer are
handled in the cloud.

• Compliance: The cloud provider guarantees that the rules and regulations the bank has to abide
by, such as BASEL III, are met.

The internal development unit of the bank institute provides the software for the online-banking service. It
is also responsible for building, installing and customizing the components that are necessary to run the
online-banking software within the cloud. Examples for such components are the web-server and the
application server.

A potential cloud provider should also provide a telephone support, to enable a prompt and
straightforward management of problems and open questions.

The potential cloud provider for this bank should only provide cloud services for the finance domain. This
lies in the fact that they are tailored to the needs for executing business cases from the financial domain.
Furthermore, they take the appropriate security requirements into account. Cloud providers offering a
non-domain specific portfolio, implement their services on a broader scope to cover the needs of
customers from different domains.

III.Method

This section introduces the method supporting potential cloud customers to specify the cloud services.
Furthermore, it supports the users to elicit their security requirements. A graphical overview of our
method is depicted in Figures 1, 2, and 3.

ex
te

rn
al

in

pu
t

m
et

ho
d

st
ep

s
in

pu
t/

ou
tp

ut

1. Instantiate
Indirect

Stakeholders

4. Instantiate
Direct

Stakeholders

CSAP:
- Instantiated
Indirect
Stakeholders

CSAP:
- Instantiated
Cloud

2. Instantiate
the Cloud

CSAP:
- Instantiated
Cloud Elements

CSAP:
- Instantiated
Direct
Stakeholders

3. Instantiate
Cloud Elements

Cloud System
Analysis Pattern
(CSAP)

CSAP:
- Instantiated
Assets

5. Instantiating
Assets

A) Modeling the business case by instantiating a Cloud System Analysis Pattern

	

	

Figure 1. A Method for structured elicitation of Cloud Security
Requirements (1/3)

Figure 2. A Method for structured elicitation of Cloud Security
Requirements (2/3)

Figure 3. A Method for structured elicitation of Cloud Security
Requirements (3/3)

The basis of our approach is the so-called Cloud System Analysis Pattern (CSAP) (Beckers et al., 2011).
It provides the elements and structure to describe a cloud computing system. Furthermore, it models
relations between, e.g., stakeholders and cloud elements. A cloud scenario can be represented by
instantiating the different elements in the pattern.

ex
te

rn
al

in

pu
t

m
et

ho
d

st
ep

s
in

pu
t/

ou
tp

ut

1. Specifying
Security

Requirement
Patterns

Selected Security
Requirements
Patterns

Instantiated
selected Security
Requirements
Patterns

2. Instantiating
Security

Requirement
Patterns

Instantiated
Cloud System
Analysis Pattern

B) Instantiating Security Requirements
Patterns for the corresponding
instantiated Cloud System Analysis Pattern.

Security
Requirements
Patterns

ex
te

rn
al

in

pu
t

m
et

ho
d

st
ep

s
in

pu
t/

ou
tp

ut

1. Assigning of
Security Measures to
predefined Security

Requirements

Selected Security
Controls

2. Assigning of
Security Measures to
individual Security

Requirements

C) Assigning&Security&Measures&
to&Security&Requirements

Instantiated Security
Requirements
Patterns (predefined)

Instantiated Security
Requirements
Patterns (individual)

	

	

The method is structured into two main steps, namely:

A) Modeling the business case by instantiating a Cloud System Analysis Pattern (CSAP).

B) Instantiating security requirement patterns for the corresponding instantiated Cloud System
Analysis Pattern.

Each of the above-mentioned steps is further subdivided into sub-steps in order to gradually guide the
potential cloud customer through the method. In the following, we describe the different steps in more
detail:

A. Modeling the business case by instantiating a Cloud System Analysis Pattern
(CSAP)
In this section, we briefly introduce our Cloud System Analysis Pattern. Our approach is based on the
pattern introduced in (Beckers et al., 2011). We enrich the aforementioned pattern. We introduce and
explain the “enrichment” together with our method. To ease assigning security requirement patterns to the
instantiated CSAP in a later step of our method as well as a preparatory step towards tool support, we
specify a meta-model. The meta-model is based on the Unified Modeling Language (UML) (UML
Revision Task Force, 2010). We provide an overview of our CSAP meta-model in Figure 4. During the
CSAP instantiation process, we explain the different elements and their meaning for the business cases of
potential cloud customers. Furthermore, we describe how we realized the different CSAP elements in our
meta-model.

As a first modeling step, the potential cloud customers instantiate a CSAP that represents the required
cloud services supporting their relevant business case. The first modeling step is sub-divided into several
sub-steps. In the following, we describe these sub-steps in detail:

1. Instantiating Indirect Stakeholders: Indirect stakeholders are contained in the indirect
environment. The indirect environment is the root element of the CSAP. It contains the
representations of legislations, domain specific formalities and stipulations in form of appropriate
instantiations of indirect stakeholders. Furthermore, it contains the direct system environment.
The CSAP meta-model specifies the indirect system environment by the class
IndirectEnvironment (see Figure 4).

The indirect stakeholders represent

• legislations of accordant countries,

• domain specific regulations, and

• contractual arrangements that affect the business case of the potential cloud customers.

In the CSAP meta-model, indirect stakeholders are specified by the class IndirectStakeholder (see
Figure 4). Additionally, the abstract class Stakeholder defines the common properties for both indirect
as well as direct stakeholders. These common properties are:

• name: The name of direct/indirect stakeholders. Instantiations of direct stakeholders as well as
indirect stakeholders are identified by their names.

• description: Information that characterizes direct /indirect stakeholders in natural language.

• motivation: Motivation of direct/indirect stakeholders considering their association with the cloud
service.

• compliance and privacy: Relevant compliance and privacy laws as well as regulations that are
raised by indirect stakeholders or have to be considered by direct stakeholders.

	

	

The type of an indirect stakeholder is represented by the attribute instanceType. The different types
legislator, domain, and contract are represented as the enumeration IndirectStakeholderType.

In our example, we have to instantiate the indirect stakeholders according to the information on
regulations given in Sect. II. Therefore, it is necessary to instantiate three indirect stakeholders of instance
type legislator with the names Germany, European Union and United States, respectively (see Figure 5).
The domain specific regulations are represented by the indirect stakeholder domain instance Finance.
Furthermore, the bank institute has to consider its contractual arrangement with the VIP bank customers.
This contractual arrangement is depicted by the indirect stakeholder instance VIPCustomization.

During the instantiation of indirect stakeholders, all of their properties have to be set. For example, the
affected regulations have to be allocated to the property compliance and privacy of the appropriate
indirect stakeholder instances. One regulation for the indirect stakeholder instance Germany would be the
Bundesdatenschutzgesetz.

Figure 4. Meta-model of the Cloud System Analysis Pattern

	

	

Figure 5. Instantiated Cloud System Analysis Pattern
2. Instantiating the Cloud: The second sub-step consists of instantiating the cloud. The direct

environment contains the representations of the cloud and the direct stakeholders of the cloud.
Relations between elements form the direct environment and indirect stakeholders contained in
the indirect environment are not allowed, e.g., a legislator is usually not directly interacting with a
cloud system. In the CSAP meta-model, the direct environment is specified by the class
DirectEnvironment.

The cloud itself consists of different types of cloud elements (see sub-step Instantiating Cloud
Elements). Furthermore, assets are contained in the cloud (see sub-step Instantiating Assets). In the
CSAP meta-model, the cloud is specified by the class Cloud. The deployment model of the cloud is
represented by the property deploymentModel. The enumeration DeploymentType defines private,
community, public, and hybrid as values for this type. The different deployment models are explained
in (Mell & Grance, 2011).

3. Instantiating Cloud Elements: Cloud elements represent the physical cloud resources and the
cloud services that provide these cloud resources to the cloud customers. The resources of cloud
customers that are executed in the cloud are also represented by cloud elements. In the CSAP
meta-model, cloud elements are specified by the class CloudElement (see Figure 4). The property
instanceType represents the type of a cloud element. The different types are defined by the
enumeration CloudElementType.

A cloud element can refer to additional documentation, e.g. manufacturer’s documentation that
provides more information about the accordant cloud element. This reference is specified by the
property descriptiveDoc. For the representation of the different models of cloud services
CloudElementType defines the following literals:

	

	

• IaaS: Infrastructure as a Service.

• PaaS: Platform as a Service.

• SaaS: Software as a Service.

A detailed consideration of the above-mentioned service models is given in (Mell & Grance,
2011)

All cloud services are contained in a container named Service (see Figure 5). It allows the
association of all contained cloud processes at once. The service container is represented by a
cloud element with the instance type service. It cannot be instantiated.

The bank institute, in our running example, requires an IaaS cloud service in form of a virtual
machine for running components such as a web- and application servers. Based on that, a cloud
element with the instance type IaaS has to be instantiated. In our example, this cloud element
instance has the name Virtual Machine (see Figure 5).

For processing the online-banking service, a cloud programming interface enabling the
communication with the appropriate cloud resources is required. Because this cloud programming
interface represents a PaaS cloud service, a cloud element with the instance type PaaS and the
name Cloud Progam. Interface has to be instantiated.

The bank institute requires no SaaS cloud service as they implement their own online-banking
service. Based on that, no cloud element of the instance type SaaS has to be instantiated.
Therefore, the corresponding CSAP element remains unchanged (see Figure 5).

Generally, the fact that CSAP elements were not instantiated indicates that the needed
information for the instantiation is currently unavailable or not relevant for the scenario at hand.
Elements, which have not been instantiated remain unchanged.

Cloud resources represent the required hardware and software supplied by cloud providers. These
resources are provided via cloud services. The modeling of the cloud resources enables
statements about the security of a cloud service. Hardware and software are represented by cloud
elements with the instance types hardware and software, respectively. A resource is depicted by a
cloud element with the instance type resource. All cloud resources are contained in a pool. Pool
means that ”resources are pooled to serve multiple consumers using a multi-tenant model, with
different physical and virtual resources dynamically assigned and reassigned according to
consumer demand”(Mell & Grance, 2011). It allows associating all cloud resources at once. The
pool is represented by a cloud element with the instance type pool. It cannot be instantiated.

In our example, the hardware – a potential cloud provider has to own – is represented by the
cloud element instance Server with the instance type hardware. The software is depicted by the
cloud element instance Virtualisation-/DB-Software of type software. The instantiated cloud
element Data Center of type resource specifies that the cloud resource shall reside in a data
center.

The instantiation of the cloud software stack is necessary if the potential cloud customers require
an IaaS cloud process. In this case, the potential cloud customers want to execute their own
software such as web servers and application servers by using an IaaS cloud service.

In our example, the bank institute needs to execute its own software such as a web server and an
application server for processing their online-banking service using an IaaS in form of a virtual
machine. Therefore, the cloud software stack has to be instantiated. It is represented by the
instantiated cloud element Web-/Application-Server with the instance type cloudSoftwareStack.

	

	

The customer service has to be instantiated, if the potential cloud customers require a PaaS cloud
service for executing their own service.

In the context of our example, the customer service has to be instantiated, because the bank
institute executes their online-banking process by the use of a PaaS in form of the cloud
programming interface.

Cloud elements can have relations to each other. In the CSAP meta-model these relations are
specified by the association relationCloudElements. Our example contains the relation isBasedOn
(see Figure 5). This relation specifies that the different cloud services are based on the pool of
cloud resources.

4. Instantiating Direct Stakeholders: Direct stakeholders are persons, a group of persons or
organizations that have a direct association to the cloud. In the CSAP meta-model, direct
stakeholders are specified by the class DirectStakeholder (see Figure 4). The different types of
direct stakeholders are depicted by the property instanceType. The enumeration
DirectStakeholderType defines the following types:

• cloudCustomer: Cloud customers use cloud resources via the appropriated cloud services.

• cloudDeveloper: Cloud developers work for cloud customers. Based on the models of cloud
services that cloud customers require, the cloud developers are accountable for the
components of the cloud software stacks and/or the cloud customers services.

• support: The support employees work for cloud providers. They are the contact persons for
cloud customers and end customers and delegate open questions and problem reports to the
cloud administrators.

• endCustomer: End customers are customers that use a cloud service. They don’t provide
services to other customers. An end customer can use a cloud service directly from a cloud
provider or indirectly over another cloud customer.

• cloudProvider: Cloud providers own a pool of cloud resources. They provide the usage of
these cloud resources over accordant cloud processes.

• cloudAdministrator: Cloud administrators are responsible for the administration of the cloud
resources. They work for cloud customers.

In our example, the bank institute has to be represented in the CSAP. For this, a direct stakeholder
with the instance type cloudCustomer and the name Bank Institute has to be instantiated. The
property description depicts informal characteristics of the bank institute, like the fact that the
bank institute represents a legal person operating in the financial sector. The property motivation
depicts that cost savings are the reasons for using cloud services (see Sect. II).

Because the bank institute uses its own online-banking service and cloud software stack
components, a direct stakeholder with the instance type cloudDeveloper has to be instantiated. In
our example, this direct stakeholder instance has the name Internal Development Unit.

End customers represent the customers of the bank institute. As the institute is responsible for
selecting the cloud provider, the end customer is not relevant and does not need to be instantiated.

The cloud provider, represented by an indirect stakeholder with the instance type cloudProvider,
can’t be instantiated at this point. The instantiation of the cloud administrator will delayed until
the cloud provider is known.

Because the bank institute requires a telephone support (see Sect. II), the direct stakeholder with
the instance type support has to be instantiated. In our example, this direct stakeholder instance
has the name Telephone Support.

	

	

Direct stakeholders can have relations to each other (see Figure 4). These relations are specified
in the CSAP meta-model by the association relationDirectStakeholders. An example for such an
association is the relation WorkFor between the bank institute and the internal development unit
(see Figure 5).

Direct stakeholders can also have relations to cloud elements. In the CSAP meta-model, the
association relationCloudElementStakeholder defines these relations. The relation BuiltBy in our
example represents that the internal development unit builds the customer service (see Figure 5).

5. Instantiating Assets: Assets represent anything that has a value to potential cloud customers
(International Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC), 2005). Assets can be, for example, different occurrences of information or
physical objects.

In the CSAP meta-model, assets are defined by the class Asset. The different types are defined by
the enumeration AssetType with the following values: information, cloud data, documentation,
and physical object. Additionally, the class Asset defines the following properties:

• owner: Person or group of people who is in charge for the asset.

• description: Characterizes the asset in natural language.

In our example, the data that is relevant in the context of an online-banking transaction represents
an asset for the bank customer. Indirectly, this transaction data depicts also an asset for the bank
institute, because a loss of, e.g., integrity regarding the transaction data would have serious
consequences for them. The transaction data has to be represented by an instantiated asset of the
instance type cloudData. This asset instance has the name Transaction Data.

Assets can have relations to the representations of cloud customers and end customers who own
the assets. These relations are specified by the association belongingAssets. In our example, the
relation InputBy/OutputTo depicts, that the transaction data is an asset for the bank customer.

Furthermore, assets can have relations with the cloud elements that process, produce and/or store
assets. In the CSAP meta-model, the association relevantAssets defines these relations. For
example, the relation ProcessedBy/CreatedBy represents that transaction data is processed and
produced by the online-banking service.

	
 	

	

	

B. Instantiating security requirement patterns for the corresponding instantiated
Cloud System Analysis pattern
According to (Fabian et al., 2010), a security requirement is typically a confidentiality, integrity or
availability requirement. In our method, these kinds of requirements concern the different elements in a
CSAP instance.

The idea of requirement patterns is to provide guidance on how to specify common types of requirements,
to make it quicker and easier to write them, and to improve the quality of those requirements (Withall,
2007).

In this step, we describe our security requirement patterns and how to instantiate them. The resulting
security requirements are related to elements in the CSAP instance.

A security requirement pattern contains always fixed text passages that represent the meaning of the
security requirement pattern. These fixed text passages have generic text passages embedded in them that
have the following structure:

• []: Opening and closing squared brackets mark the beginning and end of a generic text passage,
respectively.

• instance type of CSAP element: In this case, a generic text passage references certain elements in
the corresponding CSAP. They consider all elements whose instance type correspond to the
keyword in the generic text passage. For example, the generic text passage in the security
requirement pattern in Example 1references all cloud elements of the instance type
cloudSoftware. During the instantiation of a security requirement pattern, the potential cloud
customer can select the elements for which the surrounded fixed text applies. The appropriate
elements are identified by the values of their name and instanceType properties.

In our example, the cloud software Virtualization-/DBSoftware has to be inserted, because
virtualization and data base software have to be protected against malicious software.

The keyword all before the instance type specifies that all appropriate referenced CSAP elements
are relevant for the particular security requirement pattern. Here, potential cloud customers have
to insert all referenced CSAP elements into the corresponding security requirement pattern.

During instantiating the security requirement pattern in Example 2the representation of the cloud
data Transaction Data has to be inserted into the generic text passage. The resulting security
requirement is given in Example 3.

Until now, keywords that reference CSAP elements apply only to CSAP elements of one instance
type, respectively. There are also keywords that allow referencing several instances of CSAP
elements with different instance types. These keywords are considered in the following:

• all cloud elements references all instantiated cloud elements without considering the instance
type. In our example, the representations of the cloud elements Virtual Machine, Cloud Prog.
Interface, Web-/Application-Server, Online Banking Service, Data Center, Server and
Virtualisation-/DB-Software are inserted because they are instantiated. Since the cloud services
SaaS is not instantiated. Therefore, it is not considered in the security requirement pattern.

• all cloud services references all instantiated cloud elements with the instance types IaaS, PaaS
and SaaS.

Text in bold-face is used to highlight the aspects treated in the security requirement pattern.

	

	

Example 1. Example for a security requirement pattern that references
information in an CSPA instance

Example 2. Security requirement pattern referencing all instantiated cloud
elements of the instance type cloudData

Example 3. Example for an instantiated security requirement pattern

Instantiating security requirement patterns consists of specifying security requirement patterns and
instantiating requirement patterns.

These two steps are explained in detail in the following:

1. Specifying security requirement patterns: In this step, the potential cloud customers have to
specify their requirements for the security of a potential cloud service. For that purpose, a set of
predefined security requirement patterns covering common security issues is provided. This set
should serve as a starting point for the specification of security requirement patterns and has no
claim for completeness. It is possible to add new and to update existing security requirement
patterns whenever new or changed threats or security mechanisms arise. We are confident that the
effort needed to create such new or updated security requirement patterns can be reduced by
applying the previously mentioned syntactic rules, e.g., [cloud customer]. The predefined security
requirement patterns are based on the works found in (Cloud Security Alliance, 2009), (Cloud
Security Alliance, 2010), (Heiser & Nicolett, 2008), and (European Network and Information
Security Agency, 2008). The potential cloud customers can evaluate the predefined security
requirement patterns and decide which security requirement patterns are relevant to them. With
this, they have the possibility to customize the predefined security requirement patterns to their
needs.

In our example, the bank institute specifies one aspect regarding the privacy of customer data by
adopting the security requirement pattern given in Example 4. Another privacy aspect for
customer data is specified by customizing the security requirement pattern given in Example 5.

	

	

This customization is necessary, because the bank institute does not allow the collection of
personal data by third parties.

If potential cloud customers have further security requirements that are not included in the set,
they can extend the list by creating new security requirement patterns. The structure of
customized and newly created security requirement patterns has to be validated. The resulting set
contains all security requirement patterns that have to be instantiated. This instantiation is
considered in detail in the following step.

2. Instantiating security requirement patterns: After specifying security requirement patterns the
potential cloud customers have to instantiate the relevant security requirement patterns
consecutively. Therefore, they choose an affected security requirement pattern and assign the
information from the corresponding CSAP to the generic text passages. After that, we add this
security requirement to the other already elicited security requirements.

During the instantiation of the security requirement pattern in Example 4, the bank institute has
the opportunity to select the instantiated cloud customer Bank Institute and the not instantiated
end customer End Customer. They have to select both elements, because the bank institute’s
personal data as well as the bank customers’ personal data have to be confidential. Accordingly,
both element names are inserted into the generic text passage. Thus, the name End Customer
refers to all online-banking customers in general and not to one specific online-banking customer
in particular.

	

Example 4. Adapted security requirement pattern

	

Example 5. Customized security requirement pattern

C. Assigning security measures to security requirements
In this step, we describe assigning security measures to the requirements specified in paragraph B. These
security measures define what the providers of clouds have to implement to fulfill the specified security
requirements. They enable potential cloud customers the assessment, whether their requirements are
fulfilled by cloud providers. The result doesn’t raise the claim to represent the exact level of security of
clouds. Furthermore the result shall be used by potential cloud customers as a basis for their discussion
with cloud providers.

	

	

Our method considers security measures in form of

• ISO 27001 controls in Annex A (ISO27001) and

• Security recommendations from the white paper “Security Recommendations for Cloud
Computing Providers” (BSI, 2012) from the German Federal Office for Information Security
(germ. Bundesamt für Sicherheit in der Informationstechnik (BSI))

Several well-known companies have adopted this approach such as Microsoft4,5 Amazon6, Google7,8, and
Salesforce9. The aim of the ISO 27001 standard is to establish an Information Security Management
System (ISMS). To use this standard for cloud computing systems is in accordance with the German
Federal Office for Information Security (BSI)10.

The aforementioned BSI-whitepaper contains recommendations for safe cloud computing on an abstract
level. These BSI-recommendations can be a guideline for cloud providers regarding the implementation
of security measures. However, the realization of the BSI-recommendations doesn’t replace the
implementation of an information security management system regarding a relevant norm like ISO 27001
or BSI 100-2 for the achievement of an adequate level of security. The recommendations rather allow
potential cloud customers to clarify the needed protection for their own data and application. They can
use the content of the whitepaper as a basis for the discussion with cloud providers (cf. BSI, 2012).

The determination of the mapping between our security requirements and ISO27001 controls and BSI-
recommendations, respectively, was conducted in two steps. In the first step, we screened the ISO 27001
Annex A and the BSI white paper. To support the assignment of the individual ISO 27001 controls and
BSI-recommendations, respectively, we determined the particular assets, security goals and expressive
keywords regarding our predefined security requirement patterns before the screening. With the help of
this additional information the set of possibly relevant predefined security requirement patterns regarding
an ISO 27001 control or BSI recommendation could be narrowed down. This resulting set of security
requirement patterns was then considered in detail. In the second step, we iterated over our predefined
security requirement patterns and executed full text searches on basis of the according additional
information in the ISO 27001 Annex A and the BSI white paper, respectively.

As an example of our mapping to security measures we consider the predefined security requirement
pattern given Example 2. It is mapped, among others, to the

• ISO 27001 control A.10.5.1: “Back-up copies of information and software shall be taken and
tested regularly in accordance with the agreed backup policy” (International Organization for
Standardization, 2005) and

• third BSI recommendation for data security: “Regular data backups, with customers being able to
audit their basic parameters (scope, save intervals,save times and storage duration)” (BSI, 2012).

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

4
http://blogs.msdn.com/b/windowsazure/	
 archive/2011/12/19/windows-­‐	
 azure-­‐	
 achieves-­‐	
 is0-­‐	
 27001-­‐	
 certification-­‐	
 from-­‐	
 the-­‐	
 british-­‐	

standards-­‐	
 institute.aspx	

5
http://www.windowsazure.com/en-­‐	
 us/support/	
 trust-­‐	
 center/compliance/	

6	
 http://aws.amazon.com/security/	

7
http://googleenterprise.blogspot.com.br/	
 2012/05/google-­‐	
 apps-­‐	
 receives-­‐	
 iso-­‐	
 27001.html	

8
http://www.computerweekly.com/news/	
 2240150882/Google-­‐	
 Apps-­‐	
 for-­‐	
 Business-­‐	
 wins-­‐	
 ISO-­‐	
 27001-­‐	
 certification	

9
http://www.salesforce.com/platform/cloud-­‐	
 infrastructure/security.jsp	

10
https://www.bsi.bund.de/	
 SharedDocs/Downloads/EN/BSI/	
 Publications/Minimum_information/	

SecurityRecommendationsCloudComputingProviders.	
 pdf	

	

	

When an ISO 27001 control and a BSI-recommendation respectively couldn’t be assigned to a predefined
security requirement pattern, we defined a new security requirement pattern regarding the concerned ISO
27001 control and BSI recommendation respectively.

In the following we consider assigning security measures to

• predefined security requirements and

• individual security requirements.

C1. Assigning security measures to predefined security requirements
Assigning security measures to security requirements in such a way is relevant, when potential cloud
customers have created security requirements only by instantiating security patterns of our predefined set
(see Figure7). In this case, they can imply the relevant ISO 27001 controls and/or BSI-recommendations a
cloud provider has to implement, directly form our mapping.

C2. Assigning security measures to individual security requirements
Individual security requirements are instantiated from security requirement patterns that

• are based on predefined security requirement patterns that have been modified by potential cloud
customers or

• have been specified completely by the potential cloud customers.

Regarding the first bullet point potential cloud customers have to consider the security measures, which
are mapped to the original predefined security pattern. Here, they have to decide for each security pattern,
if it still matches to the individual security requirement.

Considering the second bullet point, potential cloud customers have to execute the mapping to security
measures by themselves.

IV.Implementation
In this section, we present our current tool support.

First, we consider the Cloud System Analysis Pattern Tool (CSAP Tool). This tool supports the
instantiation of the CSAP. It also provides modeling support that allows to extend the CSAP with
additional instantiable CSAP elements and the corresponding relations between them and other CSAP
elements. Because this procedure is not part of our method it will not be considered further. The
architecture of our tool is shown in Figure 6.

	

	

Figure 6. Architecture of the Cloud System Analysis Pattern Tool

The notation used to specify the pattern is based on UML, i.e., stickmen represent roles, boxes represent
concepts or entities of the real world and named lines represent relations (associations) equipped with
cardinalities.

Our tool is based on the Eclipse platform (Eclipse Foundation, 2011) as well as its plug-ins Eclipse
Modeling Framework (EMF) (Eclipse Foundation, 2012) and the Graphical Editing Framework (GEF)
(Eclipse Foundation, 2012). We further use the Graphical Modeling Framework (GMF) (Eclipse
Foundation, 2011) to generate graphical editors.

Our CSAP meta-model (see Sect. III-A) serves as the basis for generating the appropriate (ecore) model
using EMF. This (ecore) model enables the generation of components representing CSAP information
within the CSAP Tool. The cloud system analysis pattern GUI is generated by GMF using our CSAP
meta-model.

The CSAP Tool uses the eclipse interface IWizard to create a wizard to support the instantiation of a
cloud pattern. The wizard provides a graphical interface that asks the user for the necessary information to
instantiate stakeholders, cloud elements and assets. It asks, for example, for the name and owner of an
asset. In addition, the wizard supports instantiating several instances of one instantiable CSAP element.
For example, the wizard can instantiate four indirect stakeholders in form of legislators at once.

Cloud System
Analysis
Pattern Tool

Eclipse

GMF

GEFEMF

RP Editor
CAP

Diagram

ITextPDF

GUI

Report

Inst RP Editor

IWizard

	

	

Furthermore, we equipped the wizard with validation capabilities. An example for an already
implemented validation condition is to check whether all fields of a stakeholder in the corresponding
template have entries.

It is also possible to generate a report, called CSAP report. It contains the graphical representation of the
model as well as the texts provided in the stakeholder template. We use the iTextPDF interface of Eclipse
to generate the pdf-files for the report.

For the management of security requirement patterns, we provide a Requirement Pattern Editor (RP
Editor). Its implementation is also based on the Eclipse platform (Eclipse Foundation, 2011) as well as
the aforementioned plug-ins. The RP Editor provides functionality for displaying, creating, modifying and
deleting security requirement patterns. Figure 7shows the modification of a predefined security
requirement pattern. For creating and modifying security requirement patterns, the RP Editor provides
keywords for referencing CSAP elements. These keywords represent the instance types of the
corresponding CSAP elements.

Considering a newly created or modified security requirement pattern, it has to be ensured that its
structure is valid. Based on that, the RP Editor provides an appropriate validation function that is executed
before adding a newly created or modified security requirement pattern.

The management of security requirements is provided by another editor, the so-called Instantiated
Requirement Pattern Editor (InstRP Editor). The functionality of the InstRP Editor comprises
instantiating security requirement patterns as well as displaying, modifying, and deleting security
requirements.

The implementation of the InstRP Editor is based on the same technologies as the RP Editor. During the
instantiation of security requirement patterns, the names of the referenced CSAP elements are inserted
into the corresponding generic text passages, automatically. For this procedure the InstRP Editor provides
an appropriate wizard, which allows the selection of the relevant CSAP element names.

The representation of predefined security requirement patterns in the InstRP Editor is shown in Figure 8.
Potential cloud customers have the possibility to select the relevant predefined security requirement
patterns that shall be instantiated. In Figure 8, for example, only the security requirement pattern from
Example 1 is selected.

Figure 9shows the instantiation of the above selected security requirement pattern in the InstRP Editor.
Here, the InstRP Editor shows the security requirement pattern that shall be instantiated and the current
and only keyword cloud software that shall be substituted by the appropriate information of the
corresponding CSAP instance. In our instantiation, the CSAP instance from Figure 5 is considered.
According to this, the only selectable CSAP information is Virtualization-/DB-Software. The resulting
security requirement is given in Figure 10.

In Sect. III-B, we mentioned that the set of security requirements has to be consistent to the corresponding
CSAP instance. This consistency has to be ensured by an appropriate validation function. To enable this
the instance type of a referenced CSAP element has to be captured in the representation of a security
requirement. Based on the name and the instance type, the validation function can compare the references
in the security requirements against the elements in the corresponding CSAP instance.

	

	

Figure 7. Modification of a security requirement pattern in the RP Editor

	

	

Figure 8. Selection of predefined security requirement patterns in InstRP
Editor for instantiation

Figure 9. Instantiation of a security requirement pattern in the InstRP Editor

	

	

Figure 10. Representation of security requirements in the InstRP Editor

V.Evaluation/Discussion

The procedure presented in this paper was developed based on discussions with practitioners from cloud
security projects. Parts of our method have been discussed with security consultants. The security
consultants mentioned that this structured method

• helps to understand the scope of the analysis of a cloud and to consider all relevant parts of it.

• supports the identification of security requirements.

• increases the use of models instead of texts in standards, which eases the effort of understanding
the system documentation significantly.

• provides the means for abstraction of a complex system and structured reasoning for security
based upon this abstraction.

One issue that needs further investigation is scalability, both in terms of the effort needed by the
requirements engineers in order to enter all information about the organization as well as the requirements
elicitation proposed. We will use the approach for different scenarios to investigate if the method scales
for different fields, as well.

Our tool will also undergo a series of usability tests, which shall discover issues with its use in a
productive environment. We aim to identify usability issues and resolve these in order to further improve
the user experience.

We aim to conduct also an empirical study with our tool in order to analyze the amount of time that can
be saved when using it and the amount of security requirements identified when using it. We aim to
compare it against conventional text based approaches.

Security requirement patterns and CSAP are linked together. So, if an element in the CSAP instance is
changed, e.g., name or type, it is necessary to change the security requirement, as well. Otherwise, we
create an inconsistency.

	

	

VI.Related Work

Schumacher et al. (2006) propose patterns specifically for security. The authors defined simple solutions
to security problems during the software engineering design and implementation phases. The resulting
pattern catalogues support specifically design and implementation phases of software engineering
processes, while our work focuses on the analysis phase of software engineering.

Withall (2007) provides guidelines and examples for formulating software requirements based upon
project experience. The author also explains the need for documentation of 9 requirements including
assumptions, glossary, document history and references. Withall’s work aims at writing textual
requirements, which also consider domain knowledge in the form of assumptions to these requirements.
Our work differs from Withall’s, because we provide patterns for context descriptions and requirements
elicitation.

Fernandez et al. (2007) design several UML models of some aspects of Voice-over-IP (VoIP)
infrastructure, including architectures and basic use cases. The authors also present security patterns that
describe countermeasures to VoIP attacks. Our work provides additionally tool support and requirements
validation. We can also envision to use the models and information from Fernandez et al. to provide an
adaptation of our approach for VoIP scenarios.

Hafiz (2006) described four privacy design patterns for the network level of software systems. These
patterns solely focus on anonymity and unlinkability of senders and receivers of network messages from
protocols, e.g., HTTP. The works of Fernandez et al. and Hafiz focuses exclusively on specific kinds of
systems: Voice-over-IP and network-based software systems. We focus on any kind of cloud computing
system.

Alexander (1978) developed patterns for building houses and even towns. The author proposed to use
patterns to support architects in the process of building houses and towns. In addition, Alexander invented
a pattern language, which all patterns are based upon. Alexander defined the term pattern language as a
structured method for describing proven design practices for a specific domain. Understanding the
language of the pattern supports the development of new patterns and using existing patterns. The
difference to our work is that we use a structural description of software systems in combinations with
textual requirements pattern. Hence, our work is focused on the analysis phase of software engineering.

Gamma et al. (1994) propose simple textual patterns for design problem the authors encountered
frequently during software engineering projects. These textual patterns or templates contain a structure
that is similar for each pattern. For example, every pattern has a name, a motivation for its usage and
consequences. A complete description can be found in (Gamma et al., 1994). These patterns support
software engineers during the design and implemented phases of given software engineering processes.
The authors decided not to rely only upon graphical models, because these cannot capture the decisions,
alternatives, and trade offs that led to successful design decisions. Nevertheless, graphical representations
of the structure of design solutions in classes based on the object modeling technique (OMG). The
behavior of diagrams is shown in interaction diagrams. Both kinds of diagrams are explained in detail in
(Gamma et al., 1994). In contrast to Gamma et al. we do not focus on design solutions, but rather on a
structured elicitation of requirements in the analysis phase of software engineering.

Fowler (1996) developed patterns for the analysis phase of a given software engineering process. The
patterns of this author describe organizational structures, processes like accounting, planning and trading.
In contrast to the patterns from Gamma et al. Fowler did not rely upon a fixed structure for his patterns.
He states that each pattern should have a name, but other than that the fields in the textual templates can
be different. The author also uses a graphical notation he defines in the book that contains e.g. class and
interaction diagrams. The patterns are derived from experience in projects. Fowler’s work differs from

	

	

our own, because it focuses on describing economic domain knowledge in particular.

Hatebur and Heisel (2009). proposed patterns for expressing and analyzing dependability requirements.
The approach defines important elements of these requirements and checks for consistency in these
requirements. In addition, the authors support reasoning for these requirements based upon Jackson’s
problem frame method (Jackson, 2001). Beckers and Heisel (2012) proposed a similar approach for
privacy. Both methods differ from ours, because these focus on formulating quality requirements and in
particular security requirements.

VII. Conclusion and Future Work

We have presented a structured method for describing the context of clouds and to elicit corresponding
security requirements. We provide a structured selection of security measures that fulfill the security
requirements, as well. The controls can be taken from a standard such as the ISO 27001 or from other
sources.

Our method provides the means to analyze cloud scenarios with regards to security in a structured
manner. The method relies upon patterns to describe the context and elicit the security requirements,
which eases the effort for these activities.

Our approach offers the following main benefits:

• A structured method for describing the context and eliciting security requirements and selection
of security controls.

• A support tool that contains a graphical representation of the pattern for describing the cloud
scenario as well as textual patterns for security requirements and security controls.

• Validation conditions to check the instantiation of all patterns.

In the future, we intend to

• implement all currently developed validation conditions.

• document the context description, security requirements definition, and security controls that
fulfill the requirements.

• automatically generate standard compliant reports.

• validate our method further by applying it to different case studies

Acknowledgements
This research was partially supported by the EU project Network of Excellence on Engineering Secure
Future Internet Software Services and Systems (NESSoS, ICT-2009.1.4Trustworthy ICT, Grant No.
256980) and the Ministry of Innovation, Science, Research and Technology of the German State of North
Rhine-Westphalia and EFRE (Grant No. 300266902 and Grant No. 300267002).

References
Alexander, C. (1978). A Pattern Language: Towns, Buildings, Construction. Oxford, United Kingdom
:Oxford University Press.

Armbrust, M. , Fox, A., Griffith, R., Joseph, A. D. , Katz, R. H., Konwinski, A., Lee, G., Patterson, D. A.
Rabkin, A., Stoica, I. & Zaharia, M. (2009). Above the clouds: A berkeley view of cloud computing.
Technical Report, Berkeley University, California, United States.

	

	

B. Fabian, S. Gürses, M. Heisel, T. Santen, & H. Schmidt (2010). A comparison of security requirements
engineering methods. Requirements Engineering – Special Issue on Security Requirements Engineering,
vol. 15, no. 1, pp. 7–40. Berlin / Heidelberg / New York: Springer.

Beckers, K. & Heisel, M. (2012). A foundation for requirements analysis of privacy preserving software.
In Proceedings of the International Cross Domain Conference and Workshop (CD-ARES 2012). Lecture
Notes in Computer Science. Springer, 93–107. Berlin / Heidelberg / New York: Springer.

Beckers, K., Küster, J.-C., Faßbender, S. & Schmidt, H. (2011). Pattern-based support for context
establishment and asset identification of the ISO 27000 in the field of cloud computing. In Proceedings
of ARES, pp. 327–333. Washington, DC, USA: IEEE Computer Society.

Cloud Security Alliance (CSA) (2009). Security Guidance for Critical Areas of Focus in Cloud
Computing. Seattle, USA : CSA.

Cloud Security Alliance (CSA) (2010). Top threats to cloud computing. Seattle, USA : CSA.

Eclipse Foundation (2011). Eclipse - An Open Development Platform, http://www.eclipse.org/.

—— (2011), Eclipse Graphical Modeling Framework (GMF), http://www.eclipse.org/modeling/gmf/.

—— (2012), Eclipse Modeling Framework Project (EMF), http://www.eclipse.org/modeling/emf/.

—— (2011), Graphical Editing Framework Project (GEF), http://www.eclipse.org/gef/.

European Network and Information Security Agency (NIST) (2009). Cloud computing - benefits, risks
and recommendations for information security. Heraklion, Crete, Greece: NIST.

Fernandez, E. B., Pelaez, J. C. & Larrondo-Petrie, M. M. (2007). Security patterns for voice over ip
networks. In Proceedings of International Multi-Conference on Computing in the Global Information
Technology (ICCGI 2007), vol., no., pp.33,33, 4-9. Washington, DC, USA: IEEE Computer Society.

Fowler, M. (1996). Analysis Patterns: Reusable Object Models. Boston, United States: Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of Reusable Object-
Oriented Software. Boston, United States: Addison-Wesley.

German Federal Office for Information Security (BSI) (2012). Security Recommendations for Cloud
Computing Providers. Bonn, Germany: BSI.

Hafiz, M. (2006). A collection of privacy design patterns. In Proceedings of the 2006 conference on
Pattern languages of programs (PLoP '06), Article 7, 13 pages. New York, United States : ACM.

Hatebur, D. & Heisel, M. (2009). A foundation for requirements analysis of dependable software. In
Proceedings of the International Conference on Computer Safety, Reliability and Security (SAFECOMP),
B. Buth, G. Rabe, and T. Seyfarth, Eds. LNCS Series, vol. 5775. Springer Berlin / Heidelberg / New
York, 311–325.

Heiser, J. & Nicolett, M. (2008). Assessing the security risks of cloud computing. Stamford, USA:
Gartner.

International Organization for Standardization (ISO) and International Electrotechnical Commission
(IEC) (2005). ISO 27001- Information technology - Security techniques - Information security
management systems - Requirements. Geneva, Switzerland: ISO.

Jackson, M. (2001). Problem Frames - Analyzing and structuring software development problems.
Boston, United States: Addison-Wesley.

Mell, P. & Grance, T. (2011). The NIST definition of cloud computing (Special Publication 800-145).
Gaithersburg, United States: The National Institute of Standards and Technology (NIST).

	

	

Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F. & Sommerlad, P. (2006).
Security Patterns: Integrating Security and Systems Engineering. Hoboken, New Jersey, United States:
Wiley.

UML Revision Task Force, OMG Unified Modeling Language: Superstructure, Object Management
Group (OMG), May 2010.

Vaquero, L. M., Rodero-Merino, L. , Caceres, J. & Lindner, M. (2008). A break in the clouds: Towards
a cloud definition. SIGCOMM Computer Communication Review, vol. 39, no. 1, pp. 50–55. New York,
United States : ACM.

Withall, S. (2007) Software Requirement Patterns. Redmond, United States: MICROSOFT PRESS.

