A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Volumes of Hyperbolic Three-Manifolds Associated with Modular Links
2019
Symmetry
Periodic geodesics on the modular surface correspond to periodic orbits of the geodesic flow in its unit tangent bundle PSL 2 ( Z ) ∖ PSL 2 ( R ) . A finite collection of such orbits is a collection of disjoint closed curves in a 3-manifold, in other words a link. The complement of those links is always a hyperbolic 3-manifold, and hence has a well-defined volume. We present strong numerical evidence that, in the case of the set of geodesics corresponding to the ideal class group of a real
doi:10.3390/sym11101206
fatcat:d54bui7mcvetzpazsyljmtkjlq