Regional physically based landslide early warning modelling: soil parameterisation and validation of the results

Teresa Salvatici, Veronica Tofani, Guglielmo Rossi, Michele D'Ambrosio, Carlo Tacconi Stefanelli, Elena Benedetta Masi, Ascanio Rosi, Veronica Pazzi, Pietro Vannocci, Miriana Petrolo, Filippo Catani, Sara Ratto (+2 others)
2018 NHESSD  
In this work, we apply a physically-based model, namely the HIRESSS (High REsolution Stability Simulator) model, to forecast the occurrence of shallow landslides at regional scale. The final aim is the set-up of an early warning system at regional scale for shallow landslides. HIRESSS is a physically based distributed slope stability simulator for analysing shallow landslide triggering conditions in real time and in large areas using parallel computational techniques. The software can run in
more » ... tware can run in real-time by assimilating weather data and uses Monte Carlo simulation techniques to manage the geotechnical and hydrological input parameters. The test area is a portion of the Valle d'Aosta region, located in North-West Alpine mountain chain. The geomorphology of the region is characterized by steep slopes with elevations ranging from 400 m a.s.l. of Dora Baltea's river floodplain to 4810 m a.s.l. of Mont Blanc. In the study area, the mean annual precipitation is about 800–900 mm. These features lead to a high hydrogeological hazard in the whole territory, as mass movements interest the 70 % of the municipality areas (mainly shallow rapid landslides and rock falls). In order to apply the model and to increase its reliability, an in-depth study of the geotechnical and hydrological properties of hillslopes controlling shallow landslides formation was conducted. In particular, two campaigns of on site measurements and laboratory experiments were performed with 12 survey points. The data collected contributes to generate input map of parameters for HIRESSS model. In order to take into account the effect of vegetation on slope stability, the contribution of the root cohesion has been also taken into account based on the vegetation map and literature values. The model was applied in back analysis on two past events that have affected Valle d'Aosta region between 2008 and 2009, triggering several fast shallow landslides. The validation of the results, carried out using a database of past landslides, has provided good results and a good prediction accuracy of the HIRESSS model both from temporal and spatial point of view. A statistical analysis of the HIRESSS outputs in terms of failure probability has been carried out in order to define reliable alert levels for regional landslide early warning systems.
doi:10.5194/nhess-2017-425 fatcat:ia2epnkqcfg6flsupp4zld6zj4