Packet Routing with Graph Attention Multi-agent Reinforcement Learning [article]

Xuan Mai, Quanzhi Fu, Yi Chen
2021 arXiv   pre-print
Packet routing is a fundamental problem in communication networks that decides how the packets are directed from their source nodes to their destination nodes through some intermediate nodes. With the increasing complexity of network topology and highly dynamic traffic demand, conventional model-based and rule-based routing schemes show significant limitations, due to the simplified and unrealistic model assumptions, and lack of flexibility and adaption. Adding intelligence to the network
more » ... l is becoming a trend and the key to achieving high-efficiency network operation. In this paper, we develop a model-free and data-driven routing strategy by leveraging reinforcement learning (RL), where routers interact with the network and learn from the experience to make some good routing configurations for the future. Considering the graph nature of the network topology, we design a multi-agent RL framework in combination with Graph Neural Network (GNN), tailored to the routing problem. Three deployment paradigms, centralized, federated, and cooperated learning, are explored respectively. Simulation results demonstrate that our algorithm outperforms some existing benchmark algorithms in terms of packet transmission delay and affordable load.
arXiv:2107.13181v1 fatcat:zc2whz7cbbhdrd44nvo3zjxdfe