MicroRNA-138-1-3p sensitizes sorafenib to hepatocellular carcinoma by targeting PAK5 mediated β-catenin/ABCB1 signaling pathway [post]

Tong-tong Li, Jie Mou, Yao-jie Pan, Fu-chun Huo, Wen-qi Du, Jia Liang, Lin Li, Yang Wang, Dong-Sheng Pei
2020 unpublished
Background: Kinase inhibitor sorafenib is the first-line targeted drug for advanced hepatocellular carcinoma (HCC) patients. However, the appearance of anti-cancer agents' resistance has limited its therapeutic effect. Methods: In this study, quantitative real-time PCR (qPCR) and Western Blot were utilized to detect the levels of PAK5 in HCC sorafenib-resistant cells and their parental cells. The biological functions of miR-138-1-3p and PAK5 in sorafenib-resistant cells and their parental cells
more » ... were explored by cell viability assay, plate colony formation assay and flow cytometric analysis. The potential mechanisms of PAK5 were evaluated via co-immunoprecipitation (co-IP), immunofluorescence, dual luciferase reporter assay and chromatin immunoprecipitation (ChIP). The effects of miR-138-1-3p and PAK5 on HCC sorafenib chemoresistant characteristics were investigated by a xenotransplantation model. Results: We detected significant down-regulation of miR-138-1-3p and up-regulation of PAK5 in HCC sorafenib resistance cell lines. Mechanical studies revealed that miR-138-1-3p reduced the protein expression of PAK5 by directly targeting the 3′-UTR of PAK5 mRNA. In addition, we verified that PAK5 elevated the phosphorylation and nuclear translocation of β-catenin that enhanced the transcriptional activity of multidrug resistance protein ABCB1. Conclusions: PAK5 contributed to the sorafenib chemoresistant characteristics of HCC by activity β-catenin/ABCB1 signaling pathway. Our findings identified the correlation between miR-138-1-3p and PAK5 and the molecular mechanisms of PAK5-mediated HCC sorafenib resistance, which provided a potential therapeutic target for advanced HCC patients.
doi:10.21203/rs.3.rs-97867/v1 fatcat:tqfscfci2fbdnd2bwxh4wcp6u4