Investigation of LIBS and Raman data analysis methods in the context of in-situ planetary exploration

Kristin Rammelkamp, Humboldt-Universität Zu Berlin
The studies presented in this thesis investigate different data analysis approaches for mainly laser-induced breakdown spectroscopy (LIBS) and also Raman data in the context of planetary in-situ exploration. Most studies were motivated by Mars exploration due to the first extraterrestrially employed LIBS instrument ChemCam on NASA's Mars Science Laboratory (MSL) and further planned LIBS and Raman instruments on upcoming missions to Mars. Next to analytical approaches, statistical methods known
more » ... ical methods known as multivariate data analysis (MVA) were applied and evaluated. In this thesis, four studies are presented in which LIBS and Raman data analysis strategies are evaluated. In the first study, LIBS data normalization with plasma parameters, namely the plasma temperature and the electron density, was studied. In the second study, LIBS measurements in vacuum conditions were investigated with a focus on the degree of ionization of the LIBS plasma. In the third study, the capability of MVA methods such as principal component analysis (PCA) and partial least squares regression (PLS-R) for the identification and quantification of halogens by means of molecular emissions was tested. The outcomes are promising, as it was possible to distinguish apatites and to quantify chlorine in a particular concentration range. In the fourth and last study, LIBS data was combined with complementary Raman data in a low-level data fusion approach using MVA methods. Also, concepts of high-level data fusion were implemented. Low-level LIBS and Raman data fusion can improve identification capabilities in comparison to the single datasets. However, the improvement is comparatively small regarding the higher amount of information in the low-level fused data and dedicated strategies for the joint analysis of LIBS and Raman data have to be found for particular scientific objectives.
doi:10.18452/20703 fatcat:flbkyloptbc5pk73nbjlzrj3oq