Effect of Extraction Solvents and Drying Methods on the Physicochemical and Antioxidant Properties of Helicteres hirsuta Lour. Leaves

Hong Pham, Van Nguyen, Quan Vuong, Michael Bowyer, Christopher Scarlett
2015 Technologies  
Helicteres hirsuta Lour. (H. hirsuta L.) is widely distributed in southeast Asian countries and has been used traditionally as a medicinal plant. However, optimal conditions for preparation of dried materials for further processing and suitable solvents for the extraction of bioactive compounds have not been investigated. The objective of this study was to evaluate the effects of different extraction solvents and different drying conditions on the physicochemical properties and antioxidant
more » ... nd antioxidant capacity of the H. hirsuta L. leaves. The results showed that both extraction solvents and drying conditions had a significant impact on physicochemical and antioxidant properties of H. hirsuta L. leaves. Among the five solvents investigated, water could extract the highest level of solid content and phenolic compounds, whereas methanol was more effective for obtaining flavonoids and saponins than other solvents. The leaves dried under either hot-air drying at 80 °C (HAD80), or vacuum drying at 50 °C (VD50) yielded the highest amount of total phenolic compounds OPEN ACCESS Technologies 2015, 3 286 (7.77 and 8.33 mg GAE/g, respectively) and total flavonoid content (5.79 and 4.62 mg CE/g, respectively), and possessed the strongest antioxidant power, while leaves dried using infrared drying at 30 °C had the lowest levels of bioactive compounds. Phenolic compounds including flavonoids had a strong correlation with antioxidant capacity. Therefore, HAD80 and VD50 are recommended for the preparation of dried H. hirsuta L. leaves. Water and methanol are suggested solvents to be used for extraction of phenolic compounds and saponins from H. hirsuta L. leaves for the potential application in the nutraceutical and pharmaceutical industries.
doi:10.3390/technologies3040285 fatcat:wyr6skul45dy3dcnw4fe5tuvz4