Morphological and functional MDCT: problem-solving tool and surrogate biomarker for hepatic disease clinical care and drug discovery in the era of personalized medicine

Liang Wang
2010 Hepatic Medicine : Evidence and Research  
This article explains the significant role of morphological and functional multidetector computer tomography (MDCT) in combination with imaging postprocessing algorithms served as a problem-solving tool and noninvasive surrogate biomarker to effectively improve hepatic diseases characterization, detection, tumor staging and prognosis, therapy response assessment, and novel drug discovery programs, partial liver resection and transplantation, and MDCTguided interventions in the era of
more » ... d medicine. State-of-the-art MDCT depicts and quantifies hepatic disease over conventional CT for not only depicting lesion location, size, and extent but also detecting changes in tumor biologic behavior caused by therapy or tumor progression before morphologic changes. Color-encoded parameter display provides important functional information on blood flow, permeability, leakage space, and blood volume. Together with other relevant biomarkers and genomics, the imaging modality is being developed and validated as a biomarker to early response to novel, targeted anti-VEGF(R)/PDGFR or antivascular/ angiogenesis agents as its parameters correlate with immunohistochemical surrogates of tumor angiogenesis and molecular features of malignancies. MDCT holds incremental value to World Health Organization response criteria and Response Evaluation Criteria in Solid Tumors in liver disease management. MDCT volumetric measurement of future remnant liver is the most important factor influencing the outcome of patients who underwent partial liver resection and transplantation. MDCT-guided interventional methods deliver personalized therapies locally in the human body. MDCT will hold more scientific impact when it is fused with other imaging probes to yield comprehensive information regarding changes in liver disease at different levels (anatomic, metabolic, molecular, histologic, and other levels).
doi:10.2147/hmer.s9052 pmid:24367211 pmcid:PMC3846718 fatcat:ctkfxlk6ojd2jo554imcrqa5rm