Optimal design for parameter estimation in EEG problems in a 3D multilayered domain

M. I. Troparevsky, N. Saintier, D. Rubio, H. T. Banks
2015 Mathematical Biosciences and Engineering  
The fundamental problem of collecting data in the "best way" in order to assure statistically efficient estimation of parameters is known as Optimal Experimental Design. Many inverse problems consist in selecting best parameter values of a given mathematical model based on fits to measured data. These are usually formulated as optimization problems and the accuracy of their solutions depends not only on the chosen optimization scheme but also on the given data. We consider an electromagnetic
more » ... electromagnetic interrogation problem, specifically one arising in an electroencephalography (EEG) problem, of finding optimal number and locations for sensors for source identification in a 3D unit sphere from data on its boundary. In this effort we compare the use of the classical D-optimal criterion for observation points as opposed to that for a uniform observation mesh. We consider location and best number of sensors and report results based on statistical uncertainty analysis of the resulting estimated parameters. Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
doi:10.3934/mbe.2015.12.739 pmid:25974344 fatcat:2ytzjxkqgzgvdisnl75ztj65je