A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Bayesian analysis of reduced rank regression models using post-processing
2021
Bayesian estimation of reduced rank regression models requires careful consideration of the well known identification problem. We demonstrate that this identification problem can be handled efficiently by using prior distributions that restrict a part of the parameter space to the Stiefel manifold and post-processing the obtained Gibbs sampler output according to an appropriately specified loss function. This extends the possibilities for Bayesian inference in reduced rank regression models.
doi:10.17877/de290r-22158
fatcat:u7yxyq3ol5aj5oyp5kjnyluoia