MIMO-SAR: Opportunities and Pitfalls

Gerhard Krieger
2014 IEEE Transactions on Geoscience and Remote Sensing  
This paper reviews advanced radar architectures that employ multiple transmit and multiple receive antennas to improve the performance of future synthetic aperture radar (SAR) systems. These advanced architectures have been dubbed multiple-input multiple-output SAR (MIMO-SAR) in analogy to MIMO communication systems. Considerable confusion arose, however, with regard to the selection of suitable waveforms for the simultaneous transmission via multiple channels. It is shown that the mere use of
more » ... rthogonal waveforms is insufficient for the desired performance improvement in view of most SAR applications. As a solution to this fundamental MIMO-SAR challenge, a new class of short-term shift-orthogonal waveforms is introduced. The short-term shift orthogonality avoids mutual interferences from the radar echoes of closely spaced scatterers, while interferences from more distant scatterers are suppressed by digital beamforming on receive in elevation. Further insights can be gained by considering the data acquisition of a side-looking imaging radar in a 3-D information cube. It becomes evident that the suggested waveforms fill different subspaces that can be individually accessed by a multichannel receiver. For completeness, the new class of short-term shift-orthogonal waveforms is also compared to a recently proposed pair of orthogonal frequency-division multiplexing waveforms. It is shown that both sets of waveforms require essentially the same principle of range time to elevation angle conversion via a multichannel receiver in order to be applicable for MIMO-SAR imaging without interference. Index Terms-Digital beamforming (DBF), multidimensional waveform encoding, multiple-input multiple-output synthetic aperture radar (MIMO-SAR), orthogonal frequency-division multiplexing (OFDM). 0196-2892
doi:10.1109/tgrs.2013.2263934 fatcat:fx6772qapncala4mbwsptg7moy