Spectral properties of entanglement witnesses

G Sarbicki
2008 Journal of Physics A: Mathematical and Theoretical  
Entanglement witnesses are observables which when measured, detect entanglement in a measured composed system. It is shown what kind of relations between eigenvectors of an observable should be fulfilled, to allow an observable to be an entanglement witness. Some restrictions on the signature of entaglement witnesses, based on an algebraic-geometrical theorem will be given. The set of entanglement witnesses is linearly isomorphic to the set of maps between matrix algebras which are positive,
more » ... ch are positive, but not completely positive. A translation of the results to the language of positive maps is also given. The properties of entanglement witnesses and positive maps express as special cases of general theorems for $k$-Schmidt witnesses and $k$-positive maps. The results are therefore presented in a general framework.
doi:10.1088/1751-8113/41/37/375303 fatcat:dabghvllufggtgvmqk6yctzwte