Superadiabatic control of quantum operations

Jonathan Vandermause, Chandrasekhar Ramanathan
2016 Physical Review A  
Adiabatic pulses are used extensively to enable robust control of quantum operations. We introduce a new approach to adiabatic control that uses the superadiabatic quality or Q-factor as a performance metric to design robust, high fidelity pulses. This approach permits the systematic design of quantum control schemes to maximize the adiabaticity of a unitary operation in a particular time interval given the available control resources. The interplay between adiabaticity, fidelity and robustness
more » ... of the resulting pulses is examined for the case of single-qubit inversion, and superadiabatic pulses are demonstrated to have improved robustness to control errors. A numerical search strategy is developed to find a broader class of adiabatic operations, including multi-qubit adiabatic unitaries. We illustrate the utility of this search strategy by designing control waveforms that adiabatically implement a two-qubit entangling gate for a model NMR system.
doi:10.1103/physreva.93.052329 fatcat:4k75jmdze5fkhh4zqz5nerhs2a