Development and Characterization of a 171Yb+ Miniature Ion Trap Frequency Standard [article]

Heather L. Partner
2012 arXiv   pre-print
This dissertation reports on the development of a low-power, high-stability miniature atomic frequency standard based on 171Yb+ ions. The ions are buffer-gas cooled and held in a linear quadrupole trap that is integrated into a sealed, getter-pumped vacuum package, and interrogated on the 12.6 GHz hyperfine transition. We hope to achieve a long-term fractional frequency stability of 10^-14 with a miniature clock that consumes only 50 mW of power and occupies a volume of 5 cm^3. I discuss our
more » ... gress over several years of work on this project. We began by building a conventional tabletop clock to use as a test bed while developing several designs of miniature ion-trap vacuum packages, while also developing techniques for various aspects of the clock operation, including ion loading, laser and magnetic field stabilization, and a low power ion trap drive. The ion traps were modeled using boundary element software to assist with the design and parameter optimization of new trap geometries. We expect a novel trap geometry that uses a material new to ion traps to lead to an exceptionally small ion trap vacuum package in the next phase of the project. To achieve the long-term stability required, we have also considered the sensitivity of the clock frequency to magnetic fields. A study of the motion of the individual ions in a room-temperature cloud in the trap was performed with the purpose of understanding the effect of both spatially varying and constant magnetic fields on the clock resonance and therefore the operation of the clock. These effects were studied experimentally and theoretically for several traps. In summary, this dissertation is a contribution to the design, development, and testing of a 171Yb+ ion cloud frequency standard and related techniques, including analyses of trap geometries and parameters, modeling of the ion motion, and the practical operation of the clock.
arXiv:1208.5622v1 fatcat:5h6ysdkh2zfwbau32jpf5uk7wy