Discovering New Intents via Constrained Deep Adaptive Clustering with Cluster Refinement [article]

Ting-En Lin, Hua Xu, Hanlei Zhang
<span title="2019-11-20">2019</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Identifying new user intents is an essential task in the dialogue system. However, it is hard to get satisfying clustering results since the definition of intents is strongly guided by prior knowledge. Existing methods incorporate prior knowledge by intensive feature engineering, which not only leads to overfitting but also makes it sensitive to the number of clusters. In this paper, we propose constrained deep adaptive clustering with cluster refinement (CDAC+), an end-to-end clustering method
more &raquo; ... that can naturally incorporate pairwise constraints as prior knowledge to guide the clustering process. Moreover, we refine the clusters by forcing the model to learn from the high confidence assignments. After eliminating low confidence assignments, our approach is surprisingly insensitive to the number of clusters. Experimental results on the three benchmark datasets show that our method can yield significant improvements over strong baselines.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1911.08891v1</a> <a target="_blank" rel="external noopener" href="">fatcat:uvaea6pvofd7rdjlfjxojf6ylq</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>