High Performance of Pb-doped Li4Ti5O12 as an Anode Material for Lithium Ion Batteries

Keqiang Ding
2017 International Journal of Electrochemical Science  
For the first time, Pb-doped Li 4 Ti 5 O 12 (Pb-LTO) was prepared by a solution-drying-calcination (SDC) method in which lead acetate was employed as a dopant. In the present work, the effect of Pb to Ti atomic ratio on the physicochemical properties as well as the electrochemical performance of the synthesized materials was systematically investigated. X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammometry (CV), electrochemical impedance spectroscopy (EIS) and
more » ... py (EIS) and galvanostatic charge-discharge test were mainly used to examine the as-prepared samples. XRD results not only effectively demonstrated the formation of Li 4 Ti 5 O 12 but also indicated that the crystallinities of the resultant samples were closely related to the Pb to Ti atomic ratio used. Also, SEM images indicated that relatively regular particles with an average size of 0.5 μm could be prepared when the Pb to Ti atomic ratio was 0.01 (sample b). The results of electrochemical measurements indicated that the initial discharge capacity of sample b was as high as 185 mAh g -1 at 0.2C rate and sample b could show a high specific capacity of 169 mAh g -1 after 20 cycles at 0.2 C rate. Using a very cheaper dopant of lead acetate to prepare the high performance Pb-doped LTO was the main contribution of this preliminary work, which was believed to be very beneficial to the further commercialization of LTO.
doi:10.20964/2017.09.40 fatcat:oh7ba5ivcfgwjfujuy565ffcoa