A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
A Framework for Optimal Worker Selection in Spatial Crowdsourcing Using Bayesian Network
2020
IEEE Access
Spatial Crowdsourcing (SC) is a new paradigm of crowdsourcing applications. Unlike traditional crowdsourcing, SC outsources tasks to distributed potential workers, and those who accept the task are required to travel to a predefined location to complete it. Currently, the primary aim of SC is to maximize the number of matched tasks or to minimize the travelling distances of the workers. However, less focus is given in matching the right tasks to the right workers, particularly in a
doi:10.1109/access.2020.3005543
fatcat:vhuuf2iqiferfpvttpw776ksji