Estado del arte:

H. Gallego, E. Toro, R. Rojas
2020 Revista de Ingeniería de Construcción  
A brief presentation is made on the problem of fly ash from sugar production, which can be transformed into pozzolan through physical, thermal, chemical or mixed activation, and then used as a chemical corrector and additive for the production of Portland cement. The conversion of the ash into pozzolans is carried out with hydrothermal processes that include repetitive actions of incubation, filtration and drying, for which an alkali solution is used at high temperatures, where compounds such
more » ... re compounds such as zeolites are formed from the amorphous aluminosilicates present, being necessary in some cases to adjust the Si/Al ratio to produce the desired type of pozzolan. It is concluded that the use of fly ash, as a chemical corrector in the raw clinker mix, depends on the purity of the limestone and the evaluation of the chemical balance of the mix. Resumen Se hace una breve presentación sobre el problema de las cenizas volantes provenientes de la producción de azúcar, las cuales se pueden transformar en puzolana por medio de activación física, térmica, química o mixta, para luego ser utilizadas como corrector químico y adición para la producción de cemento Portland. La conversión de las cenizas en puzolanas se lleva a cabo con procesos hidrotérmicos que incluyen acciones repetitivas de incubación, filtración y secado, para lo cual se utiliza una solución álcali a altas temperaturas, en donde se forman compuestos como zeolitas a partir de los aluminosilicatos amorfos presentes, siendo necesario en algunos casos, ajustar la proporción de Si/Al para producir el tipo de puzolana deseada. Se concluye que el uso de cenizas volantes, como corrector químico en la mezcla cruda del clínker, depende de la pureza de la piedra caliza y de la valoración del balance químico de la mezcla. Palabras clave: Puzolana; ceniza volante; subproductos industriales; sostenibilidad Abiodun, Y. O.; Jimoh, A. A. (2018). Microstructural characterisation, physical and chemical properties of rice husk ash as viable Pozzolan in building material: a case study of some Nigerian grown rice varieties. Andaç, Ö.; Tatlıer, M.; Sirkecioğlu, A.; Ece, I.; Erdem-Şenatalar, A. (2005). Effects of ultrasound on zeolite A synthesis. Microporous and Mesoporous Materials, 79(1), 225-233. https://doi.org/https://doi.. Behin, J.; Bukhari, S. S.; Kazemian, H.; Rohani, S. (2016). Developing a zero liquid discharge process for zeolitization of coal fly ash to synthetic NaP zeolite. Fuel, 171, 195-202. https://doi.org/https://doi.org/10.1016/j.fuel.2015.12.073. Belviso, C.; Cavalcante, F.; Lettino, A.; Fiore, S. (2011). Effects of ultrasonic treatment on zeolite synthesized from coal fly ash. Ultrasonics Sonochemistry, 18(2), 661-668. https://doi.org/https://doi.org/10.1016/j.ultsonch.2010.08.011. Bentz, D. P.; Ferraris, C. F.; Filliben, J. J. (2011). Optimization of Particle Sizes in High Volume Fly Ash Blended Cements. NISTIR 7763. Benzaazoua, M.; Peyronnard, O.; Belem, T.; Stephant, A.; Dublet, G. (2010). Key issues related to behaviour of binders in cemented paste backfilling. . Blissett, R. S.; Rowson, N. A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1-23. https://doi.org/10.1016/j.fuel.2012.03.024. Bukhari, S. S.; Behin, J.; Kazemian, H.; Rohani, S. (2014). A comparative study using direct hydrothermal and indirect fusion methods to produce zeolites from coal fly ash utilizing single-mode microwave energy. Journal of Materials Science, 49(24), 8261-8271. https://doi.org/10.1007/s10853-014-8535-2. Camilo, J.; Gutiérrez, R. (2006). Efectos de la adición de metacaolín en el cemento pórtland. Dyna, 73(150), 131-141. Cordeiro, G. C.; Toledo Filho, R. D.; Fairbairn, E. M. R. (2009). Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Construction and Building Materials, 23(10), 3301-3303. https://doi.org/10.1016/j.conbuildmat.2009.02.013. Enríquez, M. (2019). Aprovechamiento de residuos industriales para la obtención de clínker. Tesis de investigación presentada como requisito parcial para optar al título de: 2/MaryeniEnr%C3%ADquez.2019.pdf. Erdoğdu, K.; Türker, P. (1998). Effects of fly ash particle size on strength of portland cement fly ash mortars. Cement and Concrete Research, 28(9), 1217-1222. https://doi.org/10.1016/S0008-8846(98)00116-1. Feng, W.; Wan, Z.; Daniels, J.; Li, Z.; Xiao, G.; et al. (2018). Synthesis of high quality zeolites from coal fly ash: Mobility of hazardous elements and environmental applications. Journal of Cleaner Production, 202, 390-400. https://doi.org/10.1016/j.jclepro.2018.08.140. Ferrari, L.; Kaufmann, J.; Winnefeld, F.; Plank, J. (2012). Reaction of clinker surfaces investigated with atomic force microscopy. Construction and Building Materials, 35, 92-96. https://doi.org/10.1016/j.conbuildmat.2012.02.089. Fotovat, F.; Kazemeini, M.; Kazemian, H. (2009). Novel utilization of zeolited fly ash hosting cobalt nanoparticles as a catalyst applied to the Fischer-Tropsch synthesis. Catalysis Letters, 127(1-2), 204-212. https://doi.org/10.1007/s10562-008-9671-6. Gallego Ocampo, H. L. (2015). Reactivity of the co-combustion of coal-sludge. .UG Ciencia 21, 91-102. Givi, A. N.; Rashid, S. A.; Aziz, F. N. A.; Salleh, M. A. M. (2010)
doi:10.4067/s0718-50732020000200119 fatcat:hdtb3rbeincslf2od47qi7zntu