A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
Connective Eccentric Index of an Infinite Family of Linear Polycene Parallelogram Benzenoid

2014
*
International Letters of Chemistry, Physics and Astronomy
*

Let G=(V, E) be a graph, where V(G) is a non-empty set of vertices and E(G) is a set of edges.We defined dv denote the degree of vertex v∈V(G). The Eccentric Connectivity index ξ(G) and theConnective Eccentric index Cξ(G) of graph G are defined as ξ(G)= ∑ v∈V(G)dv x ξ(v) and Cξ(G)=ξ(G)= ∑ v∈V(G)dv x ξ(v)- where ε(v) is defined as the length of a maximal path connecting a vertex v toanother vertex of G. In this present paper, we compute these Eccentric indices for an infinite family oflinear

doi:10.18052/www.scipress.com/ilcpa.37.57
fatcat:3s6p2voyzravlhs5h34ygbtvkm