Experimental Study and Modeling of Three Classes of Collective Problem-Solving Methods [thesis]

Kyanoush Seyed Yahosseini, Universitätsbibliothek Der FU Berlin, Universitätsbibliothek Der FU Berlin
People working together can be very successful problem-solvers. Many real-life examples, from Wikipedia to citizen science projects, show that, under the right conditions, crowds can find remarkable solutions to complex problems. Yet, joining the capabilities of many people can be challenging. What factors make some groups more successful than others? How does the nature of the problem and the structure of the environment influence the group's performance? To answer these questions, I consider
more » ... stions, I consider problem-solving as a search process -- a situation in which individuals are searching for a good solution. I describe and compare three different methods for structuring groups: (1) non-interacting groups, where individuals search independently without exchanging any information, (2) social groups, where individuals freely exchange information during their search, and (3) solution-influenced groups, where individuals repeatedly contribute to a shared collective solution. First, I introduce the idea of transmission chains - a specific type of solution-influenced group where individuals tackle the problem one after another, each one starting from the solution of its predecessor. I apply this method to binary choice problems and compare it to majority voting rules in non-interacting groups. The results show that transmission chains are superior in environments where individual accuracy is low and confidence is a reliable indicator of performance. This type of environment, however, is rarely observed in two experimental datasets. Then, I evaluate the performance of transmission chains for problems that have a complex structure, such as multidimensional optimization tasks. Again, I use non-interacting groups as a comparison, this time by selecting the best out of multiple independent solutions. Simulations and experimental data show that transmission chains outperform independent groups under two environmental conditions: either when problems are rather easy, or when group members are relatively unskilled. Next, I focus on socia [...]
doi:10.17169/refubium-27367 fatcat:5263xahfm5cyzoxmfcl57dza2u