On Semisimple Malcev Algebras

Alberto Elduque
1989 Proceedings of the American Mathematical Society  
Let M be a finite dimensional semisimple Malcev algebra over a perfect field of characteristic / 2,3 . Let N{M) be its /-nucleus and J(M, M, M) the subspace spanned by its jacobians. Then it is shown that M = N(M)® J(M,M,M), N(M) is a semisimple Lie algebra and J(M,M,M) is a direct sum of simple non-Lie Malcev algebras.
doi:10.2307/2048037 fatcat:4jldm2uh2rfvbcakvw5k7ugoia