Minimum Constructive Back Propagation Neural Network Based on Fuzzy Logic for Pattern Recognition of Electronic Nose System

Radi Radi, Muhammad Rivai, Mauridhi Hery Purnomo
2011 IPTEK: The Journal for Technology and Science  
AbstractConstructive Back Propagation Neural Network (CBPNN) is a kind of back propagation neural network trained with constructive algorithm. Training of CBPNN is mainly conducted by developing the network's architecture which commonly done by adding a number of new neuron units on learning process. Training of the network usually implements fixed method to develop its structure gradually by adding new units constantly. Although this method is simple and able to create an adaptive network for
more » ... daptive network for data pattern complexity, but it is wasteful and inefficient for computing. New unit addition affects directly to the computational load of training, speed of convergence, and structure of the final neural network. While increases training load significantly, excessive addition of units also tends to generate a large size of final network. Moreover, addition pattern with small unit number tends to drop off the adaptability of the network and extends time of training. Therefore, there is important to design an adaptive structure development pattern for CBPNN in order to minimize computing load of training. This study proposes Fuzzy Logic (FL) algorithm to manage and develop structure of CBPNN. FL method was implemented on two models of CBPNN, i.e. designed with one and two hidden layers, used to recognize aroma patterns on an electronic nose system. The results showed that this method is effective to be applied due to its capability to minimize time of training, to reduce load of computational learning, and generate small size of network. KeywordsCBPNN, structure development pattern, fuzzy logic, effective AbstrakConstructive Back Propagation Neural Network (CBPNN) adalah jaring saraf perambatan balik galat yang dilatih dengan algoritma konstruktif. Pelatihan CBPNN pada dasarnya dilakukan melalui metode pengembangan arsitektur jaring yang biasanya dilakukan dengan menambahkan sejumlah neuron baru pada lapis tersembunyi pada proses pelatihannya. Pelatihan jaring saraf ini dapat dilakukan dengan metode fixed, yaitu metode pengembangan struktur jaring dengan pola penambahan sejumlah neuron konstan secara bertahap. Meskipun cara ini mudah dilakukan dan telah mampu membangun struktur jaring yang adaptif terhadap kempleksitas data pelatihan, namun dari sisi komputasi dipandang kurang efisien. Penambahan neuron baru secara langsung berdampak terhadap beban komputasi pelatihan, kecepatan konvergensi, dan struktur jaring saraf yang terbentuk. Selain memberatkan beban komputasi, penambahan neuron yang terlalu banyak cenderung menghasilkan struktur jaring akhir yang besar. Di lain pihak, pola penambahan dengan sedikit neuron dapat menurunkan kemampuan adaptasi jaring saraf dan cenderung menambah waktu pelatihan. Oleh karena itu, pola pengembangan struktur jaring CBPNN yang adaptif perlu didesain untuk menurunkan beban komputasi pelatihan. Penelitian ini mengusulkan algoritma Fuzzy Logic (FL) untuk mengadaptifkan pengembangan struktur jaring CBPNN. Metode FL ini diterapkan pada pelatihan CBPNN dengan dua struktur, yaitu CBPNN dengan satu lapisan tersembunyi dan CBPNN dengan dua lapisan tersembunyi. Hasil penelitian menunjukan bahwa metode ini cukup efektif untuk diterapkan karena mampu meminimumkan waktu pelatihan, mengurangi beban komputasi dan menghasilkan struktur jaring saraf akhir yang lebih kecil. Kata KunciCBPNN, pola pengembangan struktur, logika fuzzy, efektif
doi:10.12962/j20882033.v22i3.69 fatcat:gqoh5cg6hjdwfkoxsgesgzro3i