Identifying Liars Through Automatic Decoding of Children's Facial Expressions

Kaila C. Bruer, Sarah Zanette, Xiao Pan Ding, Thomas D. Lyon, Kang Lee
2019 Child Development  
This study explored whether children's (N = 158; 4- to 9 years old) nonverbal facial expressions can be used to identify when children are being deceptive. Using a computer vision program to automatically decode children's facial expressions according to the Facial Action Coding System, this study employed machine learning to determine whether facial expressions can be used to discriminate between children who concealed breaking a toy(liars) and those who did not break a toy(nonliars). Results
more » ... ound that, regardless of age or history of maltreatment, children's facial expressions could accurately (73%) be distinguished between liars and nonliars. Two emotions, surprise and fear, were more strongly expressed by liars than nonliars. These findings provide evidence to support the use of automatically coded facial expressions to detect children's deception.
doi:10.1111/cdev.13336 pmid:31682003 fatcat:i3zpu5do45g7vp6xp6vbh2ek3e