A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Improvements of some Berezin radius inequalities
2022
Constructive Mathematical Analysis
The Berezin transform $\widetilde{A}$ and the Berezin radius of an operator $A$ on the reproducing kernel Hilbert space over some set $Q$ with normalized reproducing kernel $k_{\eta}:=\dfrac{K_{\eta}}{\left\Vert K_{\eta}\right\Vert}$ are defined, respectively, by $\widetilde{A}(\eta)=\left\langle {A}k_{\eta},k_{\eta}\right\rangle$, $\eta\in Q$ and $\mathrm{ber} (A):=\sup_{\eta\in Q}\left\vert \widetilde{A}{(\eta)}\right\vert$. A simple comparison of these properties produces the inequalities
doi:10.33205/cma.1110550
fatcat:dphlaqjeqzfpnbryhdtdlri2pm