The effect of ice phenology exerted on submerged macrophytes through physicochemical parameters and the phytoplankton abundance

Wojciech Ejankowski, Tomasz Lenard
2015 Journal of Limnology  
<p>The physicochemical parameters of water, the concentration of chlorophyll-a and the submerged aquatic vegetation (SAV) were studied to evaluate the effects of different winter seasons on the biomass of macrophytes in shallow eutrophic lakes. We hypothesised that a lack of ice cover or early ice-out can influence the physicochemical parameters of water and thus change the conditions for the development of phytoplankton and SAV. The studies were conducted in four lakes of the Western Polesie
more » ... e Western Polesie region in mid-eastern Poland after mild winters with early ice-out (MW, 2011 and 2014) and after cold winters with late ice-out (CW, 2010, 2012 and 2013). The concentrations of soluble and total nitrogen, chlorophyll-a and the TN:TP ratio in the lakes were considerably higher, whereas the concentration of soluble and total phosphorus and water transparency were significantly lower after the MW compared with after the CW. No differences were found in water temperature, reaction and electrolytic conductivity. Low water turbidity linked with low concentration of chlorophyll-a after the CW resulted in increased water transparency and the total biomass of the SAV. The negative effect of the MW on the macrophyte species was stronger on more sensitive species (Myriophyllum spicatum, Stratiotes aloides) compared with shade tolerant Ceratophyllum demersum. Our findings show that the ice cover phenology affected by climate warming can change the balance between phytoplankton and benthic vegetation in shallow eutrophic lakes, acting as a shift between clear and turbid water states. We speculate that various responses of macrophyte species to changes in the water quality after two winter seasons (CW and MW) could cause alterations in the vegetation biomass, particularly the expansion of shade tolerance and the decline of light-demanding species after a series of mild winters.</p>
doi:10.4081/jlimnol.2015.1207 fatcat:kp42y37vkbftjk2y3kcoxvf3oy