Convolution of ultradistributions and ultradistribution spaces associated to translation-invariant Banach spaces

Pavel Dimovski, Stevan Pilipović, Bojan Prangoski, Jasson Vindas
2016 Kyoto Journal of Mathematics  
We introduce and study a number of new spaces of ultradifferentiable functions and ultradistributions and we apply our results to the study of the convolution of ultradistributions. The spaces of convolutors $\mathcal{O}'^{\ast}_{C}(\mathbb{R}^{d})$ for tempered ultradistributions are analyzed via the duality with respect to the test function spaces $\mathcal{O}^{\ast}_{C}(\mathbb{R}^{d})$, introduced in this article. We also study ultradistribution spaces associated to translation-invariant
more » ... lation-invariant Banach spaces of tempered ultradistributions and use their properties to provide a full characterization of the general convolution of Roumieu ultradistributions via the space of integrable ultradistributions. We show that the convolution of two Roumieu ultradistributions $T,S\in \DD'^{\{M_p\}}\left(\RR^d\right)$ exists if and only if $\left(\varphi*\check{S}\right)T\in\DD'^{\{M_p\}}_{L^1}\left(\RR^d\right)$ for every $\varphi\in\DD^{\{M_p\}}\left(\RR^d\right)$.
doi:10.1215/21562261-3478916 fatcat:sqlb4oyqtbdbdkvs5qnol3s52m