2-Layered Architecture of Vague Logic Based Multilevel Queue Scheduler

Supriya Raheja, Reena Dadhich, Smita Rajpal
2014 Applied Computational Intelligence and Soft Computing  
In operating system the decisions which CPU scheduler makes regarding the sequence and length of time the task may run are not easy ones, as the scheduler has only a limited amount of information about the tasks. A good scheduler should be fair, maximizes throughput, and minimizes response time of system. A scheduler with multilevel queue scheduling partitions the ready queue into multiple queues. While assigning priorities, higher level queues always get more priorities over lower level
more » ... lower level queues. Unfortunately, sometimes lower priority tasks get starved, as the scheduler assures that the lower priority tasks may be scheduled only after the higher priority tasks. While making decisions scheduler is concerned only with one factor, that is, priority, but ignores other factors which may affect the performance of the system. With this concern, we propose a 2-layered architecture of multilevel queue scheduler based on vague set theory (VMLQ). The VMLQ scheduler handles the impreciseness of data as well as improving the starvation problem of lower priority tasks. This work also optimizes the performance metrics and improves the response time of system. The performance is evaluated through simulation using MatLab. Simulation results prove that the VMLQ scheduler performs better than the classical multilevel queue scheduler and fuzzy based multilevel queue scheduler.
doi:10.1155/2014/341957 fatcat:qpow3dcn2bchdbdhl5yprftt4q