A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
The Second Eigenvalue of some Normal Cayley Graphs of Highly Transitive Groups

2019
*
Electronic Journal of Combinatorics
*

Let $G$ be a finite group acting transitively on $[n]=\{1,2,\ldots,n\}$, and let $\Gamma=\mathrm{Cay}(G,T)$ be a Cayley graph of $G$. The graph $\Gamma$ is called normal if $T$ is closed under conjugation. In this paper, we obtain an upper bound for the second (largest) eigenvalue of the adjacency matrix of the graph $\Gamma$ in terms of the second eigenvalues of certain subgraphs of $\Gamma$. Using this result, we develop a recursive method to determine the second eigenvalues of certain Cayley

doi:10.37236/8054
fatcat:za27qw27pzcylccjkcnyfspt5q