A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
State Estimation Using a Randomized Unscented Kalman Filter for 3D Skeleton Posture
2021
Electronics
In this study, we propose a method for minimizing the noise of Kinect sensors for 3D skeleton estimation. Notably, it is difficult to effectively remove nonlinear noise when estimating 3D skeleton posture; however, the proposed randomized unscented Kalman filter reduces the nonlinear temporal noise effectively through the state estimation process. The 3D skeleton data can then be estimated at each step by iteratively passing the posterior state during the propagation and updating process.
doi:10.3390/electronics10080971
fatcat:tteu7holl5dvvfb3hxazsogqbi