New-generation NASA Aura Ozone Monitoring Instrument (OMI) volcanic SO2 dataset: algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS)

Can Li, Nickolay A. Krotkov, Simon Carn, Yan Zhang, Robert J. D. Spurr, Joanna Joiner
2017 Atmospheric Measurement Techniques  
<p><strong>Abstract.</strong> Since the fall of 2004, the Ozone Monitoring Instrument (OMI) has been providing global monitoring of volcanic SO<sub>2</sub> emissions, helping to understand their climate impacts and to mitigate aviation hazards. Here we introduce a new-generation OMI volcanic SO<sub>2</sub> dataset based on a principal component analysis (PCA) retrieval technique. To reduce retrieval noise and artifacts as seen in the current operational linear fit (LF) algorithm, the new
more » ... thm, the new algorithm, OMSO2VOLCANO, uses characteristic features extracted directly from OMI radiances in the spectral fitting, thereby helping to minimize interferences from various geophysical processes (e.g., O<sub>3</sub> absorption) and measurement details (e.g., wavelength shift). To solve the problem of low bias for large SO<sub>2</sub> total columns in the LF product, the OMSO2VOLCANO algorithm employs a table lookup approach to estimate SO<sub>2</sub> Jacobians (i.e., the instrument sensitivity to a perturbation in the SO<sub>2</sub> column amount) and iteratively adjusts the spectral fitting window to exclude shorter wavelengths where the SO<sub>2</sub> absorption signals are saturated. To first order, the effects of clouds and aerosols are accounted for using a simple Lambertian equivalent reflectivity approach. As with the LF algorithm, OMSO2VOLCANO provides total column retrievals based on a set of predefined SO<sub>2</sub> profiles from the lower troposphere to the lower stratosphere, including a new profile peaked at 13 <span class="thinspace"></span>km for plumes in the upper troposphere. Examples given in this study indicate that the new dataset shows significant improvement over the LF product, with at least 50<span class="thinspace"></span>% reduction in retrieval noise over the remote Pacific. For large eruptions such as Kasatochi in 2008 (∼ 1700<span class="thinspace"></span>kt total SO<sub>2</sub>) and Sierra Negra in 2005 (&amp;gt;<span class="thinspace"></span>1100<span class="thinspace"></span>DU maximum SO<sub>2</sub>), OMSO2VOLCANO generally agrees well with other algorithms that also utilize the full spectral content of satellite measurements, while the LF algorithm tends to underestimate SO<sub>2</sub>. We also demonstrate that, despite the coarser spatial and spectral resolution of the Suomi National Polar-orbiting Partnership (Suomi-NPP) Ozone Mapping and Profiler Suite (OMPS) instrument, application of the new PCA algorithm to OMPS data produces highly consistent retrievals between OMI and OMPS. The new PCA algorithm is therefore capable of continuing the volcanic SO<sub>2</sub> data record well into the future using current and future hyperspectral UV satellite instruments.</p>
doi:10.5194/amt-10-445-2017 fatcat:mhgqdpm355arba6cycy5vkq3iu