Karyotypic Evolution of Sauropsid Vertebrates Illuminated by Optical and Physical Mapping of the Painted Turtle and Slider Turtle Genomes

Ling Sze Lee, Beatriz M. Navarro-Domínguez, Zhiqiang Wu, Eugenia E. Montiel, Daleen Badenhorst, Basanta Bista, Thea B. Gessler, Nicole Valenzuela
2020 Genes  
Recent sequencing and software enhancements have advanced our understanding of the evolution of genomic structure and function, especially addressing novel evolutionary biology questions. Yet fragmentary turtle genome assemblies remain a challenge to fully decipher the genetic architecture of adaptive evolution. Here, we use optical mapping to improve the contiguity of the painted turtle (Chrysemys picta) genome assembly and use de novo fluorescent in situ hybridization (FISH) of bacterial
more » ... ) of bacterial artificial chromosome (BAC) clones, BAC-FISH, to physically map the genomes of the painted and slider turtles (Trachemys scripta elegans). Optical mapping increased C. picta's N50 by ~242% compared to the previous assembly. Physical mapping permitted anchoring ~45% of the genome assembly, spanning 5544 genes (including 20 genes related to the sex determination network of turtles and vertebrates). BAC-FISH data revealed assembly errors in C. picta and T. s. elegans assemblies, highlighting the importance of molecular cytogenetic data to complement bioinformatic approaches. We also compared C. picta's anchored scaffolds to the genomes of other chelonians, chicken, lizards, and snake. Results revealed a mostly one-to-one correspondence between chromosomes of painted and slider turtles, and high homology among large syntenic blocks shared with other turtles and sauropsids. Yet, numerous chromosomal rearrangements were also evident across chelonians, between turtles and squamates, and between avian and non-avian reptiles.
doi:10.3390/genes11080928 pmid:32806747 fatcat:tasztsww4ne4xjdhilr6jyy3ae