Automated quantification of morphodynamics for high-throughput live cell time-lapse dataset

German Gonzalez, Ludovico Fusco, Fethallah Benmansour, Pascal Fua, Olivier Pertz, Kevin Smith
2011
We present a fully automatic method to track and quantify the morphodynamics of differentiating neurons in uorescence time-lapse microscopy datasets. While previous efforts have successfully quantified the dynamics of organelles such as the cell body, nucleus, or chromosomes of cultured cells, neurons have proved to be uniquely challenging due to their highly deformable neurites which expand, branch, and collapse. Our approach is capable of robustly detecting, tracking, and segmenting all the
more » ... mponents of each neuron present in the sequence including the nucleus, soma, neurites, and filopodia. To meet the demands required for high-throughput processing, our framework is designed tobe extremely effcient, capable of processing a single image in approximately two seconds on a conventional notebook computer. For validation of our approach, we analyzed neuronal differentiation datasets in which a set of genes was perturbed using RNA interference. Our analysis confirms previous quantitative findings measured from static images, as well as previous qualitative observations of morphodynamic phenotypes that could not be measured on a large scale. Finally, we present new observations about the behavior of neurons made possible by our quantitative analysis, which are not immediately obvious to a human observer. ABSTRACT We present a fully automatic method to track and quantify the morphodynamics of differentiating neurons in fluorescence time-lapse datasets. Previous high-throughput studies have been limited to static analysis or simple behavior. Our approach opens the door to rich dynamic analysis of complex cellular behavior in high-throughput time-lapse data. It is capable of robustly detecting, tracking, and segmenting all the components of the neuron including the nucleus, soma, neurites, and filopodia. It was designed to be efficient enough to handle the massive amount of data from a high-throughput screen. Each image is processed in approximately two seconds on a notebook computer. To validate the approach, we applied our method to over 500 neuronal differentiation videos from a small-scale RNAi screen. Our fully automated analysis of over 7,000 neurons quantifies and confirms with strong statistical significance static and dynamic behaviors that had been previously observed by biologists, but never measured.
doi:10.5167/uzh-76548 fatcat:ftpr2e3bfjeifoc6qyp4ksbyne