Vectorial solutions to list multicoloring problems on graphs [article]

Yves Aubry, Olivier Togni
<span title="2012-02-22">2012</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
For a graph G with a given list assignment L on the vertices, we give an algebraical description of the set of all weights w such that G is (L,w)-colorable, called permissible weights. Moreover, for a graph G with a given list L and a given permissible weight w, we describe the set of all (L,w)-colorings of G. By the way, we solve the channel assignment problem. Furthermore, we describe the set of solutions to the on call problem: when w is not a permissible weight, we find all the nearest
more &raquo; ... ssible weights w'. Finally, we give a solution to the non-recoloring problem keeping a given subcoloring.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1202.4842v1">arXiv:1202.4842v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/raprjfpkfrdmnhxefexevnatgq">fatcat:raprjfpkfrdmnhxefexevnatgq</a> </span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-1202.4842/1202.4842.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> File Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/77/37/773749918c1dc479ed2b9f0faba914dd5b63bca4.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1202.4842v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>