Discrete Element Modelling of Footwall Rock Mass Damage Induced by Sub-Level Caving at the Kiirunavaara Mine
Mikael Svartsjaern, David Saiang
2017
Minerals
The Kiirunavaara mine is one of the largest sub-level-caving (SLC) mines in the world and has been in underground operation for more than 50 years. The mine has been the focus of several case studies over the years. The previous works have either focused on the caving of the hanging wall, using the footwall as a passive support, or focused on the footwall using the hanging wall to apply a passive load. In this updated study the findings of the previous case studies are combined to study the
more »
... raction between the caving hanging wall, the developing cave rock zone and the footwall. The geological data for the rock types in the mine area are used to derive upper and lower limits for the geomechanical parameters calibrated for numerical models in the previous studies. The calibrated parameters are used as inputs to a numerical model constructed using Itasca's Particle-flow-code (PFC) encompassing a mine-scale 2D section at the mid portion of the mine. The model captures the failure locations well in the footwall underground and indicates damage development without a coherent large-scale failure. The trend in subsidence data on the hanging wall is adequately simulated but the magnitude of deformation is underestimated. The input strength for the hanging wall was lowered to study the impact of hanging wall strength on footwall damage development. It is shown that when the footwall strength is kept constant, while lowering the hanging wall strength, the extent of damage and magnitude of displacements in the footwall increases. From these observations it is argued that the hanging wall and footwall cannot be studied independently for the Kiirunavaara mine since the cave rock zone significantly affects the damage development in both walls. Minerals 2017, 7, 109 2 of 20 old open pit walls [1]. The apparent difference in behaviour between the hanging wall and footwall has resulted in the two volumes being studied almost separately. A number of previous studies focus on the ground surface impact from mining using the hanging wall rock mass as the primary entity of study, with the footwall as a passive support with a minimum of calibration related to the footwall behaviour (later works include, e.g., Villegas and Nordlund [2,3]). A second set of studies concentrates on the underground rock mass response and the impact on underground mining infrastructure, with the footwall rock mass in focus with hanging wall supplying buttress pressure with a minimum of calibration related to hanging wall ground surface response (later works include, e.g., Henry and Dahnér-Lindqvist [4] and Svartsjaern et al. [5] ). Minerals 2017, 7, 109 2 of 20 old open pit walls [1]. The apparent difference in behaviour between the hanging wall and footwall has resulted in the two volumes being studied almost separately. A number of previous studies focus on the ground surface impact from mining using the hanging wall rock mass as the primary entity of study, with the footwall as a passive support with a minimum of calibration related to the footwall behaviour (later works include, e.g., Villegas and Nordlund [2,3]). A second set of studies concentrates on the underground rock mass response and the impact on underground mining infrastructure, with the footwall rock mass in focus with hanging wall supplying buttress pressure with a minimum of calibration related to hanging wall ground surface response (later works include, e.g., Henry and Dahnér-Lindqvist [4] and Svartsjaern et al. [5]). Figure 1. Ground surface footprint of mining operations: (A) aerial photograph captured during the 1960s and (B) aerial photograph captured after 2010. Adapted from Eniro [6].
doi:10.3390/min7070109
fatcat:w2ic5lfg5bgrpdi2jkjpjfjnc4