Australia Ae. aegypti mosquitoes are susceptible to a highly divergent and sylvatic dengue virus type 2 strain infection but are unlikely to transmit [post]

2019 unpublished
Humans are the primary hosts of the dengue virus; However, sylvatic cycles of transmission can occur among non-human primates and human encroachment to forested regions can be a source of emergence of new strains. We reported the isolation of a highly divergent and sylvatic DENV-2 strain (QML22) from a dengue fever patient returning Australia from Borneo. The objective of the present study was to evaluate the vector competence of Australian Ae. aegypti mosquitoes for this virus. Methods:
more » ... us. Methods: Four-day old mosquitoes from two strains of Ae. aegypti from Queensland, Australia, were feed sheep blood meal containing 108 50% cell culture infectious dose per ml (CCID50/ml) of either QML22 or an Australian epidemic DENV serotype 2 strain (QML16) isolated from a dengue fever patient in 2015. Mosquitoes were maintained at 28°C, 75% relative humidity and sampled at 7, 10 and 14 days post-infection (DPI). Live virions in mosquito bodies (abdomen/thorax), legs and wings and saliva expectorates from individual mosquitoes were quantified using a Cell Culture Enzymelinked Immunosorbant Assay (CCELISA) to determine infection, dissemination and transmission rates. Findings: The infection and dissemination rates of the sylvatic DENV2 strain, QML22, within mosquitoes were significantly lower than that for QML16. While the titres of virus in the bodies of mosquitoes infected with either of these viruses were similar, titres in legs and wings were significantly lower in mosquitoes infected with QML22 at most time points although they reached similar levels by 14 DPI. QML16 was detected in 16% (n = 25) and 28% (n = 25) of saliva expectorates at 10 and 14 DPI, respectively. In contrast, no virus was detected in the saliva expectorates of QML22 infected mosquitoes. Conclusions: Australia urban/peri-urban Ae.aegypti species are susceptible to infection by the sylvatic and highly divergent DENV-2 virus QML22. However, our results indicate that replication of QML22 is attenuated relative to the contemporary strain QML16 and/or a salivary gland infection or escape barrier acts to prevent infection of saliva, potentially preventing onward transmission of this highly divergent virus in Australia.
doi:10.21203/rs.2.18361/v1 fatcat:pvkamj2gnbgfppoibkzdofwvxy