A novel mesh generator for the numerical simulation of multi-scale physics in neurons [article]

(:Unkn) Unknown, University, My, Gillian GQ Queisser
Computational Neuroscience deals with spatio-temporal scales which vary considerably.For example interactions at synaptic contact regions occur on the scale of nanometers and nanoseconds to milliseconds (micro-scale) whereas networks of neurons can measure up to millimeters and signals are processed on the scale of seconds (macro-scale). Whole-cell calcium dynamics models (meso-scale) mediate between the multiple spatio-temporal scales. Of crucial importance is the calcium propagation mediated
more » ... y the highly complex endoplasmic reticulum network. Most models do not account for the intricate intracellular architecture of neurons and consequently cannot resolve the interplay between structure and calcium-mediated function. To incorporate the detailed cellular architecture in intracellular Calcium models, a novel mesh generation methodology has been developed to allow for the efficient generation of computational meshes of neurons with a three-dimensionally resolved endoplasmic reticulum. Mesh generation routines are compiled into a versatile and fully automated reconstruct-and-simulation toolbox for multi-scale physics to be utilized on high-performance or regular computing infrastructures. First-principle numerical simulations on the neuronal reconstructions reveal that intracellular Calcium dynamics are effected by morphological features of the neurons, for instance a change of endoplasmic reticulum diameter leads to a significant spatio-temporal variability of the calcium signal at the soma.
doi:10.34944/dspace/4723 fatcat:obyguewn2falhjvt5nckqhxrye