An Overview of the Characteristics and Function of Vitamin C in Various Tissues: Relying on its Antioxidant Function

Abolfazl Akbari, Gholamali Jelodar, Saeed Nazifi, Javad Sajedianfard
2016 Zahedan Journal of Researches in Medical Sciences  
Vitamin C (L-ascorbic acid or ascorbate) is a biomolecule that participates in many biochemical processes. It is an essential nutrient for humans, however, in some species such as rodents and guinea pigs is synthesized. It has a variety of functions in the body that we might venture to say make it a very important antioxidant nature and pro-oxidant. L-ascorbic acidic a reduced form of vitamin C and dehydroascorbic acid (DHA) is the oxidized form of ascorbate, both L-ascorbic acid and
more » ... acid and dihydroascorbic acid retain the vitamin C activity. Dehydro-ascorbate is reconverted to ascorbate in the cytosol by cytochrome b reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Ascorbate is transported into the cell via the sodium-dependent vitamin C transporters (SVCTs), which causes accumulation of ascorbate within cells against a concentration gradient. Dehydroascorbic acid, the oxidized form of ascorbate, is transported via glucose transporters family (GLUTs). The highest concentrations of ascorbate in the body are found in brain and adrenal gland. Vitamin C also acts as a co-factor in several enzyme reactions. This vitamin is an essential biochemical factor in the reproductive process. The pharmacophore of vitamin C is the ascorbate, ascorbate is an antioxidant.Ascorbate is a neuromodulator of glutamatergic and dopaminergic system and related behaviors. It also improves components of the immune system. Given the wide role of ascorbate, further investigation is necessary to evaluate the exact mechanism(s) underlying these effects. In this review we will consider a short overview of the characteristics and function of vitamin C (relying on antioxidant function) in various tissues. Keywords: Vitamin C, Antioxidant Activity, Oxidative Stress of coenzyme of oxidation enzymes such as proline hydroxylase, lysine hydroxylase, 4-hydroxyphenylpyruvate dioxygenase, dopamine-β-hydroxylase, tryptophan hydroxylase, and -butyrobetaine hydroxylase [9] . Through
doi:10.17795/zjrms-4037 fatcat:sjto363khrbe5ou4pssjqhdh5y