Interactive learning of dynamic systems [article]

Sabine Prezenski, Nele Rußwinkel, Technische Universität Berlin, Technische Universität Berlin
2019
Wenn Personen ein Ziel mit einem Ihnen bisher unbekannten technischen System erreichen wollen, dann probieren sie das System einfach aus und lernen durch die Rückmeldung vom Systems den Umgang damit. Man spricht von Interaktivem Lernen. Um die Usability eines solchen Systems zu untersuchen, werden aufwendige Nutzerstudien durchgeführt. Zudem erfordern Änderungen im System neue Studien. Kognitive Modelle simulieren die kognitiven Prozesse von Nutzern und könnten als Ersatz oder auch Ergänzung zu
more » ... r auch Ergänzung zu Nutzertests eingesetzt werden. Interaktives Lernen von Systemen, erfordert allerdings, dass diese kognitiven Modelle elaborierte kognitive Prozesse abbilden. Das sind z.B. der Aufbau und Umbau von mentalen Modellen. Solche Aspekte kann man am besten mit der kognitiven Architektur ACT-R modellieren. Allerdings gibt es keine allgemein anerkannte Theorie zu Aufbau und Umbau von mentalen Modellen. Es gibt unterschiedliche Ansichten darüber, wie eine Repräsentation aufgebaut wird und sich verändert. Kognitive Modelle, die den Aufbau eines mentalen Modells beim interaktives Lernen von technischen Systemen abbilden sind nicht bekannt. Diese Dissertation schließt diese Lücke, in dem aufbauend auf der Theorie zum mentalen Modellen von Li und Maani (2011), ACT-R Mechanismen entwickelt und überprüft werden. Um interaktives Lernen bei technischen Systemen zu untersuchen, wurde zunächst eine Smartphone App und eine Aufgabe entwickelt, mit der empirische Daten erhoben wurden. Bei der App handelt es sich um eine Einkaufslisten App, mit einem hierarchisch-linearen Aufbau, bei der Produkte selektiert werden können. Aufgabe der Probanden war es, wiederholt dieselben Produkte zu suchen. Nach zwei Durchgängen gab es ein Update, dass die Menüstruktur der App teilweise veränderte. Im Anschluss sollten die Probanden erneut dieselben Produkte suchen. Die empirischen Daten zeigen, dass Probanden den Umgang mit der App zügig erlernen und dass ein Update den Lerneffekt unterbricht. Basierend auf der Studie wurden ACT-R Modelmechanismen für den Aufb [...]
doi:10.14279/depositonce-7951 fatcat:4bcdn5dnqraoxbkudvduo2hbfq