Direct growth and characterization of graphene layers on insulating substrates [article]

Timo Schumann, Humboldt-Universität Zu Berlin, Humboldt-Universität Zu Berlin
This thesis presents an investigation of graphene growth directly on insulating substrates. The graphene films are characterized using different techniques, including atomic force microscopy, Raman spectroscopy, and grazing-incidence X-ray diffraction. These allowed insight into the morphological, structural, and electrical properties of the graphene layers. Two different preparation methods were employed. The growth of epitaxial graphene on SiC(0001) by surface Si depletion is presented first.
more » ... is presented first. An important parameter in this type of growth is the surface steps present on the SiC substrate. We show that the initial SiC surface step configuration has little influence on the growth process, and the resulting graphene layers. The surface steps do impact the magneto-transport properties of graphene on SiC, which is investigated closely and can be explained by a schematic model. The structure of the epitaxial graphene layers is also analyzed, including precise measurements of the lattice constants. Additionally, the growth of graphene on the C-face of SiC is investigated. Graphene films were also synthesized directly on insulating substrates using molecular beam epitaxy. With the accurate deposition rates and sub-monolayer thickness control, MBE allows for fundamental studies of the growth process. We demonstrate graphene growth on two different substrates. The dependence of the morphology and structural quality of the graphene samples on the growth parameters is evaluated and discussed. We find that graphene films grown by MBE consist of nanocrystalline graphene domains with lateral dimensions exceeding 30 nm. The structural quality of the graphene layers improves with increasing substrate temperature during growth. Finally, we show that the nanocrystalline domains of the graphene films possess an epitaxial relation to either substrate, and attribute an observed contraction of the graphene lattice constant to the presence of point-defects within the film.
doi:10.18452/17051 fatcat:ufdezypstfeuxhswlsenqddhsi