From macro to lab-scale: Changes in bacterial community led to deterioration of EBPR in lab reactor

Adam Muszyński, Maria Łebkowska, Agnieszka Tabernacka, Aleksandra Miłobędzka
2013 Open Life Sciences  
AbstractA laboratory scale sequencing batch reactor (SBR), fed with synthetic wastewater containing a mixture of organic compounds, was operated for nearly six months. Despite maintaining the same operational conditions, a deterioration of enhanced biological phosphorus removal (EBPR) occurred after 40 days of SBR operation. The Prel/Cupt ratio decreased from 0.28 to 0.06 P-mol C-mol−1, and C requirements increased from 11 to 32 mg C h−1 g−1 of mixed liquor suspended solids. A FISH analysis
more » ... ed that the percentage of Accumulibacter in an overall community of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) dropped from 93% to 13%. An increase in abundance of Gammaproteobacteria (from 2.6% to 22%) and Alphaproteobacteria (from 1.8% to 10%) was observed. The number of Competibacter increased from 0.5% to nearly 9%. Clusters 1 and 2 of Defluviicoccus-related GAOs, not detected before deterioration, constituted 35% and 27% of Alphaproteobacteria, respectively. We concluded that lab-scale experiments should not be extended implicitly to full-scale EBPR systems because some bacterial groups are detected mainlyin lab-scale reactors. Well-defined, lab-scale operational conditions reduce the number of ecological niches available to bacteria.
doi:10.2478/s11535-013-0116-2 fatcat:rhgmz4mgzreyjbumosq6yml5qa