Biological network growth in complex environments - a computational framework [article]

Torsten Johann Paul, Philip Kollmannsberger
2020 bioRxiv   pre-print
Spatial biological networks are abundant on all scales of life, from single cells to ecosystems, and perform various important functions including signal transmission and nutrient transport. These biological functions depend on the architecture of the network, which emerges as the result of a dynamic, feedback-driven developmental process. While cell behavior during growth can be genetically encoded, the resulting network structure depends on spatial constraints and tissue architecture. Since
more » ... twork growth is often difficult to observe experimentally, computer simulations can help to understand how local cell behavior determines the resulting network architecture. We present here a computational framework based on directional statistics to model network formation in space and time under arbitrary spatial constraints. Growth is described as a biased correlated random walk where direction and branching depend on the local environmental conditions and constraints, which are presented as 3D multilayer images. To demonstrate the application of our tool, we perform growth simulations of the osteocyte lacuno-canalicular system in bone and of the zebrafish sensory nervous system. Our generic framework might help to better understand how network patterns depend on spatial constraints, or to identify the biological cause of deviations from healthy network function.
doi:10.1101/2020.06.01.127407 fatcat:uj6j2cwoazddboba7mti7bgleq