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Human genetic studies are rarely conducted for immunological purposes. Instead, they are typically driven by medical and

evolutionary goals, such as understanding the predisposition or resistance to infectious or inflammatory diseases, the path-

ogenesis of such diseases, and human evolution in the context of the long-standing relationships between humans and their

commensal and environmental microbes. However, the dissection of these experiments of Nature has also led to major

immunological advances. In this review, we draw on some of the immunological lessons learned in the three branches of

human molecular genetics most relevant to immunology: clinical genetics, epidemiological genetics, and evolutionary

genetics. We argue that human genetics has become a new frontier not only for timely studies of specific features of human

immunity, but also for defining general principles of immunity. These studies teach us about immunity as it occurs under

“natural” conditions, through the transition from the almost complete wilderness that existed worldwide until about a century

ago to the current unevenly distributed medically shaped environment. Hygiene, vaccines, antibiotics, and surgery have

considerably decreased the burden of infection, but these interventions have been available only recently, so have yet to

have a major impact on patterns of genomic diversity, making it possible to carry out unbiased evolutionary studies at the

population level. Clinical genetic studies of childhood phenotypes have not been blurred by modern medicine either. Instead,

medical advances have actually facilitated such studies, by making it possible for children with life-threatening infections to

survive. In addition, the prevention and treatment of infectious diseases have increased life expectancy at birth from �20 yr to

�80 yr, providing unique opportunities to study the genetic basis of immunological phenomena against which there is no

natural counterselection, such as reactivation and secondary infectious diseases and breakdown of self-tolerance manifesting

as autoimmunity, in populations of adult and aging patients. Recently developed deep sequencing and stem cell technologies

are of unprecedented power, and their application to human genetics is opening up exciting and timely possibilities for young

immunologists seeking uncharted waters to explore.

Research in humans is increasingly contributing to im-

munology, not only by defining human-specific features

of immunity, but also by revealing general principles of

immunity. There are many difficulties inherent to studies

of humans, including the great ethical and technical dif-

ficulties of experimental approaches, and the tremendous

level of inter-individual variability. These obstacles ac-

count for the systematic development of experimental

approaches in inbred animals from the early 19th century

onward. For a long time, human genetics in immunology

(i.e., immunogenetics) was almost synonymous with

“HLA and transplantation” and “HLA and disease.” Ma-

jor discoveries were made in this area, such as the strong

associations of HLA-B27 with spondylarthropathies and

of HLA-DQ8 with type 1 diabetes (T1D). However, a few

notable discoveries were made outside the realm of HLA,

such as the protective role of the sickle-cell trait (HbS) in

severe malaria. These and other genetic epidemiological

studies have been extended, facilitating the dissection of

the seemingly complex basis of phenotypes at the popu-

lation level (i.e., phenotypes common to large number of

patients). The impact of these findings was perhaps more

medical than immunological. In the 1970s and the 1980s,

when these seminal discoveries on HLA were made, only

a few investigators would have predicted that human ge-

netics would soon contribute to immunology in other

more spectacular ways.

During the last 30 years, with the emergence of recom-

binant DNA and molecular genetics, we have witnessed

continued and extraordinary progress in the tools of hu-

man genetics. This progress has accelerated further during

the last 15 years, from Sanger sequencing of the first hu-

man genome to the next-generation sequencing (NGS) of

countless whole exomes and genomes. These and other

achievements, both experimental and statistical, have

transformed the genetic variability and phenotypic hetero-

geneity of human populations from a liability into an as-

set. They have made it possible to exploit observations of

human phenotypes under natural conditions, in natura,

with an understanding of their germline genetic basis in
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each individual. Primary immunodeficiencies (i.e., sin-

gle-gene inborn errors of immunity) have made a partic-

ularly important contribution in this respect, and studies in

this field are increasing adding to immunological knowl-

edge. More recently, an older branch of genetics—human

evolutionary and population genetics—has reemerged as

a powerful molecular approach, following the generation

of gigantic data sets cataloging human genetic variation in

“healthy” (but nevertheless mortal) individuals (The In-

ternational HapMap Project, The 1000 Genomes Project,

etc.). Evolutionary genetic studies analyze the extent of

naturally occurring variations at the level of human pop-

ulations, transforming the disadvantages of interindivid-

ual and interpopulation variation into an advantage,

without the need for phenotypic selection.

Clearly, the times when human immunogenetics was

synonymous with HLA are long gone. Modern human

molecular genetic approaches can be divided into three

complementary and overlapping approaches: clinical ge-

netics, epidemiological genetics, and evolutionary genet-

ics. We review here the concepts and methods of these

three branches of human genetics, discussing the ways in

which they are likely to increase our understanding of

immunology in the future. According to Krogh’s princi-

ple, there is often a “best” species in which to tackle a

specific scientific problem experimentally (Krogh 1929;

Krebs 1975); implicit within this notion is the assumption

that an experimental solution to the problem is required, as

suggested by Claude Bernard (1865). However, we can

also view “experiments of Nature” in humans as an alter-

native and complementary way of approaching a wide

range of biological problems (McQuarrie 1944), includ-

ing immunological problems in particular (Good 1991).

Now is the ideal time to study such natural experiments, as

hygiene, vaccines, antibiotics, surgery, and other features

of modern medicine have not yet been around long enough

to modify the distribution of genotypes at the scale of

human populations. We argue here that human genetics

has thrust immunology into a new dimension, and that

such studies are complementary to experimental studies

in the mouse or even more distant animal models (Droso-

phila, lamprey, zebrafish, etc.). Inspired by insightful pa-

pers on what studies of viruses (Zinkernagel 1996),

bacteria (Vance 2010), humans (Davis 2012) and even

Darwin (Phillips 2002) have taught us about immunology,

we will focus on the lessons to be learnt about immunol-

ogy from human genetics. Owing to space limitations, we

will limit ourselves here to genetic studies of infectious

and inflammatory diseases.

CLINICAL GENETIC STUDIES

General Concepts and Methods

Genetic studies of primary immunodeficiencies (i.e.,

single-gene inborn errors of immunity) have had a tremen-

dous impact in the field of immunology (Conley et al.

2011; Casanova et al. 2013). These patient-based studies

typically aim to investigate the pathogenesis of a relatively

rare, specific textbook medical condition, a small group of

patients resembling each other but no textbook descrip-

tion, or even, in some cases, a single patient with a new

clinical presentation (Al-Herz et al. 2011; Bousfiha et al.

2013a). These genetic defects have an impact on the pop-

ulation that is individually modest (although their collec-

tive impact is greater) (Bousfiha et al. 2013b), but their

elucidation has major implications for immunology, as

they can connect a morbid genotype to a clinical pheno-

type. Studies of this kind are the easiest for most immu-

nologists working with animals to understand, as this

branch of human genetics is the closest to their own field.

Such studies aim to describe the disease-causing geno-

type, immunological mechanism, and clinical phenotype

of patients with a monogenic defect, as in mutant mice

discovered by forward genetics or created by reverse ge-

netics approaches. We use the terms monogenic and sin-

gle-gene defects interchangeably throughout this review.

We do not restrict the term “Mendelian” to monogenic

defects, as this term implies full clinical penetrance,

which is not observed in all cases. Penetrance is the pro-

portion of individuals carrying a given genotype that ac-

tually express a disease phenotype. Expressivity is the

variability of the phenotype (e.g., in terms of severity)

considered among the patients studied who carry a given

genotype. An increasing number of single-gene inborn

errors of immunity have been described since the 1950s

(Casanova and Abel 2007; Pessach et al. 2009). The first

such defects to be described were autosomal recessive

(AR) or X-linked recessive (XR), but an increasing num-

ber of autosomal-dominant (AD) traits have recently been

reported (Al-Herz et al. 2011; Bousfiha et al. 2013a). Only

in very rare instances the defect is mitochondrial.

Locus, Allelic, and Phenotypic Heterogeneity

The mutant alleles in patients with inborn errors of im-

munity may be null (i.e., loss-of-function, sensu stricto) or

hypomorphic (i.e., with residual activity). Interestingly,

hypermorphic (i.e., gain-of-function) mutations have

also recently been described (Devriendt et al. 2001; Cour-

tois et al. 2003; Liu et al. 2011). The high level of allelic

heterogeneity (i.e., diversity of mutant alleles at a given

morbid locus, exerting diverse impacts) makes the inves-

tigation of human patients with mutations of a given gene

particularly rich, due to this diversity (e.g., RAG1 and

RAG2 mutations underlying different types of T-cell def-

icits, and STAT1 mutations underlying different types of

infections, of different severity) (Buckley 2004; Boisson-

Dupuis et al. 2012; Notarangelo 2013) (Table 1), whereas

mutant mice tend to display uniform complete defects,

particularly for gene knockout. Even knocked-in and

ENU-mutated mice do not display the level of allelic

diversity observed in humans. There are no conditional

knockouts in humans, but some subtle mutations behave

differently in different cell types, being null in some cell

types but not in others (e.g., CYBB mutations affecting

only macrophages in patients with Mendelian susceptibil-

ity to mycobacterial disease, MSMD) (Bustamante et al.

2011). Perhaps the greatest surprise of all is the unpredict-

able impact of AD traits, which may exert their effects
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by haploinsufficiency (e.g., RPSA mutations underlying

asplenia and TBK1 mutations underlying HSE) or by dom-

inant-negative effects (e.g., STAT1 mutations underlying

MSMD and other TBK1 mutations in herpes simplex en-

cephalitis, HSE). The number of known AD inborn errors

of immunity is increasing and constitutes an exciting trend

in human studies. Heterozygous mutations may also have

different effects on different pathways, being null for all

pathways but associated with an AD phenotype in some

pathways (e.g., STAT1 mutations affecting IFN-g but not

IFN-a/b responses in MSMD patients) but not others.

Negative dominance accounted for the first AD defects,

but haploinsufficiency is increasingly documented, some-

times in the same pathway (e.g., IFNGR1 and IFNGR2

underlying MSMD) (Jouanguy et al. 1999; Kong et al.

2013). Both AR and AD disorders may result in partial

defects, facilitating the observation of phenotypes not seen

with embryonic lethal AR complete defects in mice or

humans (e.g., TRAF3 in HSE and MCM4 in NK defi-

ciency) (Perez de Diego et al. 2010; Gineau et al. 2012;

Hughes et al. 2012). Finally, a particular gene may be

subjected to both loss- and gain-of-function mutations

(e.g., WASP mutations underlying Wiskott–Aldrich syn-

drome or neutropenia, and STAT1 mutations MSMD or

chronic mucocutanous candidiasis, CMC). This complex-

ity has not been observed in the mouse model. There is also

considerable locus heterogeneity (i.e., diversity of mutant

loci underlying a given disease phenotype), which can

connect hitherto unrelated genes (e.g., agammaglobulin-

emia and MSMD) (Al-Muhsen and Casanova 2008; Con-

ley et al. 2009). Conversely, there is also pleiotropy at

many loci (i.e., apparently unrelated diseases being allelic

at the same locus, possibly, but not necessarily, by the

same mechanism), potentially connecting hitherto unre-

lated phenotypes (e.g., STAT1 heterozygous mutations un-

derlying MSMD or CMC) (Boisson-Dupuis et al. 2012).

Finally, it is worth stressing that the diversity of disease

phenotypes known to be caused by inborn errors of immu-

nity is steadily increasing. From infections, autoimmunity,

allergy, and cancer, which were first recognized as being

due to inborn errors of immunity in the 1950s and 1960s,

the field has expanded to include phenotypes as diverse as

hemophagocytosis, autoinflammation, alveolar proteino-

sis, and microangiopathies (Casanova and Abel 2007;

Kavanagh et al. 2008; Masters et al. 2009; Pessach et al.

2009; Trapnell et al. 2009; Pachlopnik Schmid et al. 2010).

There are probably many more relevant phenotypes to be

discovered, as the clinical frontiers of this field are relent-

lessly advancing.

The Discovery of New Genes

So, from an immunological perspective, what should

we consider to be the highlights of clinical genetics over

the last three decades of gene cloning? First, immunolog-

ical hypothesis-free, genome-wide (GW) approaches

have led to the identification of completely new genes

(i.e., previously unknown genes or genes with no known

biological function). The cellular complementation of

cellular phenotypes led to elucidation of the molecular

genetic basis of HLA class II deficiency. This tour de force

characterized the nature, diversity, and role of a set of

proteins responsible for regulating the transcription of

HLA class II loci (e.g., CIITA) (Reith et al. 1988; Krawc-

zyk and Reith 2006). This high-risk approach was less

fruitful than the much simpler GW linkage (GWL) ap-

proach, which has led to the identification of multiple

new genes. The first example was the dissection of the

gene controlling the phagocytic respiratory burst and mu-

tated in X-linked chronic granulomatous disease, which

was made possible by GWL (Royer-Pokora et al. 1986;

Teahan et al. 1987). GWL is not unlike forward genetics in

mice, which has generated a series of spectacular immu-

nological discoveries (e.g., Nramp, Ly49 H, Tlr4, and

Foxp3) (Cook et al. 2006; Beutler et al. 2007; Appleby

and Ramsdell 2008; Scalzo and Yokoyama 2008; Vidal

Table 1. Four inborn errors of STAT1 immunity: an illustration of variable inheritance, allelic heterogeneity, variable expressivity,
variable penetrance, and locus pleiotropy

Functional impact Inheritance Immunological phenotypes Clinical phenotypes

Complete STAT1 defect AR Abolished IFN-a/b, -g, -l, IL-27
responses

Severe intracellular bacterial (mycobacteria,
salmonella) and viral diseases

Partial STAT1 defect AR Impaired IFN-a/b, -g, -l, IL-27
responses

Milder intracellular bacterial and viral diseases

Partial STAT1 defect AD Selectively impaired IFN-g responses Selective intracellular bacterial diseases (MSMD)
Gain of STAT1 activity AD Enhanced IFN-a/b, -g, -l, IL-27

responses
CMC, other infections, autoimmunity, aneurysms,

carcinomas

There is allelic heterogeneity at the human STAT1 locus not only because there are multiple mutant morbid alleles but more importantly because they
have different impacts: they can be gain-of-function (GOF) or loss-of-function (LOF), the latter including truly null and hypomorphic alleles. The known
GOF alleles are gain of phosphorylation by lack of nuclear dephosphorylation. The STAT1 mutations actually define two modes of inheritance, with two
types of AR defects and two types of AD defects. The AR defects are complete (two null alleles) or partial (at least one hypomorphic allele). The AD
disorders confer gain (GOF alleles) or loss (LOF and dominant-negative alleles) of activity. In fact, the dominant-negative LOF alleles of STAT1 can be
null or hypomorphic and can be further divided into at least three groups, depending on whether they affect the DNA-binding domain, the SH2 domain, or
the phosphorylation of Tyr 701. The GOF alleles of STAT1 can also affect the coiled-coil domain or the DNA-binding domain. There is variable

expressivity as for each of the four types of inborn errors, the clinical severity varies from patient to patient, possibly but not necessarily depending on the
specific STAT1 genotype. There is even variable penetrance clinically overall: The clinical penetrance is apparently complete at an early age in patients
with complete AR deficiency and AD gain of activity, whereas the disorder may be silent until adulthood and possibly for a lifetime for the partial defects
(incomplete penetrance). Finally, the human STAT1 locus is pleiotropic because completely different infectious diseases are allelic at the STAT1 locus,
each determined by a specific type of mutant allele (MSMD with dominant-negative alleles and CMC with GOF alleles). These disorders were recently
reviewed (Boisson-Dupuis et al. 2012).
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et al. 2008). Examples of human genes identified by GWL

include ATM, BTK, WASP, ARTEMIS, and AIRE, to cite

only some of the most interesting (Tsukada et al. 1993;

Derry et al. 1994; Savitsky et al. 1995; Consortium, Finn-

ish–German APECED 1997; Nagamine et al. 1997;

Moshous et al. 2001). Some of these genetic defects iden-

tified molecules as involved in biological processes that

had previously been characterized, such as VDJ recombi-

nation (e.g., Artemis) (Moshous et al. 2001). Others have

revealed the involvement of completely new pathways.

Perhaps the most far-reaching success was the discovery

of the genetic basis of AR autoimmune polyendocrinop-

athy type I (APS-1) (Husebye and Anderson 2010) as

mutations of AIRE. This led to major molecular advances

in the field of T-cell tolerance. AIRE controls the thymic

expression of peripheral antigens and has also been shown

to control tolerance in the periphery (Anderson et al. 2002;

Gardner et al. 2008). Patients with APS-1 display multiple

autoimmune manifestations, including chronic mucocu-

taneous candidiasis that is caused, paradoxically, by au-

toantibodies against IL-17 cytokines (Kisand et al. 2010;

Puel et al. 2010). The positional cloning of AIRE has

opened up an entirely new field in immunology (Abram-

son et al. 2010). Needless to say, human GWL studies

have also had important clinical implications.

The Identification of New Functions

for Known Genes

A different, but related situation is the discovery of a

new function for a known gene (i.e., a gene to which a

different biological function has already been attributed).

This discovery may pertain to a novel immunological

function or even to the first immunological function of

the protein concerned. An example of the former is pro-

vided by IL2RG, which was initially identified as a com-

ponent of the IL-2R. Mutations in children with XR severe

combined immunodeficiency (SCID) lacking both T cells

and NK cells implied an involvement in other pathways

(Noguchi et al. 1993; Puck et al. 1993). Indeed, the lack of

T-cell development was later explained by the lack of IL-

2RG-dependent IL-7 responses, with the identification of

IL-7R deficiency in other SCID patients in whom NK

cells were present (Puel et al. 1998). A more recent exam-

ple is provided by mutations in X-linked MAGT1, encod-

ing Magnesium transporter 1, which were surprisingly

shown to confer an NK and a T-cell deficiency that results

in Epstein-Barr virus (EBV)-driven diseases (Li et al.

2011; Chaigne-Delalande et al. 2013). Mutated individu-

als display low levels of free Mg2þ in their NK and T cells,

which accounts for low NKG2D expression and poor

control of EBV-infected cells. Strikingly, Mg2þ supple-

mentation in vivo complemented the immunological and

infectious phenotypes. Another recent example is ISG15,

which has been shown to be mutated in patients with

mycobacterial disease but normal resistance to viral ill-

nesses (Bogunovic et al. 2012). The known biological and

immunological function of ISG15 is as a ubiquitin-like

molecule essential for ISGylation, an intracellular process

that is dependent on IFN-a/b and contributes to antiviral

immunity in mice (Bogunovic et al. 2013). The discovery

that ISG15 is a secreted molecule that also functions as a

potent IFN-g inducer was made by GWL and whole-

exome sequencing (WES). A related example is the dis-

covery that patients deprived of linear ubiquitination

because of inherited HOIL1 deficiency display a com-

bination of immunodeficiency, autoinflammation, and

amylopectinosis (Boisson et al. 2012). A striking example

of the discovery of a first immunological function for a

known gene is provided by the recent WES-based discov-

ery of heterozygous mutations of the gene encoding the

ribosomal protein RPSA in patients with isolated congen-

ital asplenia (ICA) (Bolze et al. 2013). RPSA was not

known to play a role in the development or function of

the immune system. Over half the patients with ICA carry

RPSA heterozygous coding mutations and the mechanism

underlying the disease involves haploinsufficiency. This

is interesting, because RPSA and ribosomes appear to

play a specific role in the translation of certain mRNAs

controlling spleen development. Another example is pro-

vided by the discovery of biallelic MCM4 mutations in

patients with a complex phenotype including a selective

NK deficiency in the hematopoietic lineage (Gineau et al.

2012; Hughes et al. 2012). The minichromosome mainte-

nance (MCM) complex was not known to be essential for

the final steps of CD56bright cell maturation to generate

CD56dim human NK cells.

The Discovery of Essential Functions

of Known Genes

Most monogenic immunodeficiencies were discovered

through candidate gene approaches, making use of the

known immunological function of various genes. The dis-

covery of humans carrying mutations in these genes was

made possible by prior description of the functions of

these genes in mice, often by gene targeting but occasion-

ally by forward genetics, oreven in humans. In some cases,

the candidate gene approach was sufficient, as for the

demonstration that IL-7R deficiency is a cause of SCID.

In othercases, the candidate gene approach was not used in

isolation, instead being combined with GWL, WES, or

both. For example, IFN-gR1 deficiency was discovered

in patients with MSMD and UNC-93B deficiency was

detected in patients with HSE by the combination of

GWL with a candidate gene approach (Jouanguy et al.

1996; Newport et al. 1996; Casrouge et al. 2006). In

such situations, the morbid gene is chosen for mechanistic

studies from a small set of genes selected on the basis of

linkage or sequencing. In rare instances, the candidate

gene approach is almost nonexistent, as GWL and WES

identify a single mutated gene, as illustrated by the discov-

ery of OX40 deficiency in patients with Kaposi sarcoma

(Byun et al. 2013). Interestingly, a key lesson to be learnt

from these studies is that the human disease phenotype

often overlaps, but does not exactly match the phenotype

observed in the mouse model. These phenotypic differenc-

es are particularly marked when the infectious and auto-

immune phenotypes are considered, as seen with inborn

errors of IFN-g, IL-17, TLR3, and TIR immunity (Casa-
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nova and Abel 2002; Casrouge et al. 2006; Ku et al. 2007;

Zhang et al. 2007, 2013; von Bernuth et al. 2008; Casanova

et al. 2011; Liu et al. 2011; Puel et al. 2011, 2012; Bogu-

novic et al. 2012). In particular, the infectious phenotypes

of humans tend to be much narrower than those observed in

mice. Surprisingly, a number of severe infections striking

otherwise healthy children were shown to be due to single-

gene inborn errors of immunity (Casanova and Abel 2005,

2013; Alcais et al. 2010). These and other studies also

revealed infectious phenotypes not predicted by the mouse

model. For example, the discovery that human IL-21 is

essential for protective immunity against Cryptosporidi-

um parvum in the liver was surprising (Kotlarz et al. 2013).

Likewise, the autoimmune phenotypes of mice and hu-

mans do not entirely overlap for Fas, Foxp3, and AIRE

deficiencies (Notarangelo et al. 2006; Cheng and Ander-

son 2012). The development and function of leukocyte

subsets may also differ between mice and humans, albeit

to a lesser extent and less frequently, as seen, for example,

with BTK and IL2RG deficiencies (Buckley 2004; Conley

et al. 2009). In any case, human genes display greater

redundancy, for both host defense and self-tolerance,

than mouse genes, accounting for the narrow infectious

or autoimmune phenotype often seen, contrasting with the

broader corresponding mouse phenotype. We have ex-

plained in detail elsewhere why we believe this is the

case, with both differences between species and differenc-

es between experimental and natural phenotypes (Casano-

va and Abel 2004). One issue of key interest in human

genetics is the description of immunity in natura, in a

natural ecosystem governed by natural selection (Casano-

va and Abel 2007; Quintana-Murci et al. 2007). Finally, it

has gradually become apparent that many single-gene in-

born errors of immunity do not display full clinical pene-

trance, particulary, but not exclusively, AD disorders (e.g.,

IL12RB1 and TLR3) (Fieschi et al. 2003; Zhang et al. 2007;

de Beaucoudrey et al. 2010). The search for the germline,

somatic, or environmental determinism of health or dis-

ease in genetically affected individuals is a major goal in

the field, which will also have an immunological impact.

GENETIC EPIDEMIOLOGICAL STUDIES

General Concepts and Methods

Genetic epidemiology involves population-based stud-

ies that combine epidemiological and genetic information

to identify gene variants with a detectable influence on

phenotypes at the population level (Khoury et al. 1993;

Alcais and Abel 2004). Before genetic markers became

available, many methods were developed for assessing the

familial aggregation of a trait. These methods included

twin studies (Khoury et al. 1993), which provided strong

evidence for the role of genetic factors in both inflamma-

tory diseases, including but not limited to autoimmune

diseases (Cooper et al. 1999), and infectious diseases

(Alcais and Abel 2004). The most formalized approach

in this context is complex segregation analysis, a statistical

method in which the familial distribution of a given phe-

notype results from the combined effects of a “major lo-

cus,” a polygenic component and environmental factors

(Khoury et al. 1993; Alcais and Abel 2004; Alcais et al.

2009a). A major gene differs from a “Mendelian” effect in

displaying incomplete penetrance and its phenotypic ex-

pression may be influenced by the environment and other

genes (including germline and somatic variants, and both

genetic and epigenetic influences) (Alcais et al. 2009a,b).

The existence of major genes for various inflammatory

(Cooper et al. 1999) and infectious (Alcais et al. 2009a)

phenotypes was first suspected in the 1970s. The advent of

genetic markers led to the development of the two pillar

methods of genetic epidemiology, linkage and association

studies, making it possible to identify major genes, as

detailed below. Both linkage and association studies can

be conducted according to two classical strategies (Casa-

nova and Abel 2004; Alcais et al. 2009a): (1) a “candidate-

gene” approach, with the a priori selection of one or a

limited number of genes/variants to be tested, based on

knowledge obtained from experimental or human studies;

(2) a “GW” approach, in which the whole genome is in-

vestigated, to generate new hypotheses. All these studies

are based on statistical tests and stringent criteria, includ-

ing replication in independent studies, must be met for the

results to be considered convincing. Evidence for a causal

role of a polymorphism may also be provided by function-

al studies, which can be challenging, as the biological

impact of the polymorphism may be subtle.

Linkage Studies

Linkage studies are used to search for chromosomal

regions that segregate in a nonrandom manner with the

phenotype of interest within families (Khoury et al.

1993; Alcais and Abel 2004). Initially, the regions iden-

tified were limited to those for which markers were

available, such as the HLA region in particular. The devel-

opment of GWL screens in the 1990s extended the use of

the major gene concept to loci identified in this context

(Alcais et al. 2009a,b). HLA-linked major loci were iden-

tified by these approaches in a number of inflammatory

disorders (Forabosco et al. 2009), such as T1D (Concan-

non et al. 2005), multiple sclerosis (MS) (Sawcer et al.

2005), and ankylosing spondylitis (AS) (Zhang et al.

2004). Several non-HLA major loci have also been

mapped in GWL screens (Goris and Liston 2012). Unfor-

tunately, in contrast to the situation for more penetrant

monogenic diseases, fine mapping of the genes of interest

cannot be achieved by linkage alone. The next step is in-

vestigating the role of variants located within the identified

region in comprehensive association studies. One of the

most remarkable instances of the identification of a non-

HLA locus in an immunological disorder was the discov-

ery of NOD2/CARD15 variants in patients with Crohn’s

disease (CD), within the chromosome 16 region (Hugot

et al. 2001; Ogura et al. 2001) previously identified by

GWL analysis (Hugot et al. 1996). This positional cloning

strategy also led to the identification of variants at two

major loci mapped in a GWL study on leprosy (Mira

et al. 2003). The first of these variants, on chromosome

6q25, concerned the regulatory region shared by PARK2, a
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gene encoding an E3-ubiquitin ligase called Parkin, and

PACRG (Parkin coregulated gene) (Mira et al. 2004). The

second, on chromosome 6p21, was a single functional

polymorphism of the lymphotoxin-a (LTA) gene (Alcais

et al. 2007). More recently, TOX variants have been shown

to be associated with pulmonary tuberculosis (TB) (Grant

et al. 2013), following the identification ofa major locuson

chromosome 8q12 (Baghdadi et al. 2006). The association

observed in these studies was much stronger in patients

who developed early-onset leprosy or pulmonary TB, con-

sistent with the general concept that a younger age at onset

of the disease reflects a stronger individual genetic effect

(Alcais et al. 2010; Casanova and Abel 2013).

Candidate Gene Association Studies

Association studies aim to assess the contribution of

genetic variants to the disease studied by comparing the

distribution of these variants between affected (cases) and

unaffected (controls) subjects (Khoury et al. 1993; Alcais

and Abel 2004). Family-based designs can also be used

for association studies (Laird and Lange 2006). Until the

advent of high-throughput genotyping, such studies inves-

tigated a limited number of variants of candidate genes.

The first and, probably, the most remarkable association

was that identified by Anthony Allison, who discovered in

the early 1950s that HbS was protective against severe

forms of P. falciparum malaria (Allison 1954). However,

the candidate genes most frequently studied in inflamma-

tory and infectious diseases since the 1970s have been

those of the HLA region. Consistent with the linkage re-

sults, the most interesting findings have been obtained for

inflammatory disorders, with a number of impressive as-

sociations (Thorsby and Lie 2005; Cho and Gregersen

2011; Goris and Liston 2012). Interestingly, most HLA

associations seem to be specific to a given disease, and in

many diseases the presence of a given HLA molecule is

almost necessary, but not sufficient for disease. One of the

most emblematic examples is the association of HLA-B27

with AS. Almost all AS patients carry this HLA antigen,

but most HLA-B27 subjects do not develop AS (Uchan-

ska-Ziegler et al. 2012). HLA genes appear to play a much

less striking role in infectious diseases, as most of the

many associations reported have not been confirmed

(Martin and Carrington 2005; Blackwell et al. 2009).

There may be a number of reasons for this, such as con-

siderable heterogeneity (e.g., in terms of ethnic origin,

phenotype definition, HLA typing, microbial strains) of

the samples tested for a given disease. The most consistent

results obtained with HLA variants have been those for

leprosy (Zhang et al. 2009a) and, particularly, for HIV

infection (Goulder and Watkins 2008; Leslie et al.

2010), with some HLA class I alleles being associated

with relatively successful control of viral replication and

slow disease progression (Migueles et al. 2000; Kiepiela

et al. 2004), and others being associated with relatively

ineffective control of viral replication and rapid disease

progression (Carrington et al. 1999; Kiepiela et al. 2004).

Finally, a recent study reported that autoantibodies against

IFN-g conferring a predisposition to mycobacterial infec-

tions and mimicking MSMD (Puel and Casanova 2013)

are strongly associated with two linked HLA class II al-

leles (Chi et al. 2013).

Genome-Wide Association Studies

A breakthrough occurred in the mid-2000 with the ad-

vent of GW association studies (GWASs), following the

development of high-throughput genotyping. The first

spectacular finding obtained in a GWAS was the identifi-

cation, in 2005, of complement factor H polymorphisms

in patients with age-related macular degeneration (Klein

et al. 2005) providing new insight into the immune-re-

lated pathogenesis of this disease (Ambati et al. 2013).

The same result was however obtained following a link-

age approach (Edwards et al. 2005; Haines et al. 2005).

GWAS also confirmed that the HLA region contained

the common variants with the greatest impact on inflam-

matory disorders, and identified more than 250 additional

loci associated with one or more of these diseases (Cho

and Gregersen 2011; Visscher et al. 2012). A number of

the non-HLA loci have been implicated in multiple dis-

eases, defining common pathways and suggesting similar

underlying mechanisms for these diseases (Cho and Gre-

gersen 2011; Cotsapas et al. 2011; Goris and Liston 2012;

Voight and Cotsapas 2012). For example, 70% of the 163

loci for which involvement in CD and ulcerative colitis

(UC) has been confirmed (Jostins et al. 2012) have also

been implicated in other inflammatory diseases (such as

AS and psoriasis in particular), and there is also an inter-

esting overlap with loci conferring susceptibility to my-

cobacterial infection. These 163 loci include five MSMD-

related loci (IL12B, IFNGR2, STAT1, IRF8, TYK2), and

seven of the eight loci identified in the leprosy GWAS

(including NOD2/CARD15) (Zhang et al. 2009b, 2011)

have also been implicated in CD and UC (Jostins et al.

2012). The effects of CD/UC and mycobacterial risk al-

leles on gene function and expression include effects op-

erating in opposite (e.g., NOD2/CARD15) and similar

(e.g., IFNGR2) directions (Jostins et al. 2012). GWASs

have identified fewer loci involved in infectious diseases.

Some of the findings of these studies have confirmed pre-

viously reported associations with HLA variants in lep-

rosy (Zhang et al. 2009b), and chronic viral infections

(Fellay et al. 2007; Dalmasso et al. 2008; Kamatani et al.

2009; Pereyra et al. 2010). However, the most remarkable

achievement of GWAS in infectious diseases has been the

identification of IL28B variants associated with the clear-

ance of HCV either in response to treatment (Ge et al.

2009; Suppiah et al. 2009; Tanaka et al. 2009) or sponta-

neously (Thomas et al. 2009; Duggal et al. 2013). The

molecular mechanisms underlying this association re-

mained elusive until the recent identification of a new

dinucleotide variant (TT vs. DG) in the IL28B region

(Bibert et al. 2013; Prokunina-Olsson et al. 2013). The

DG allele associated with poorer clearance of the virus is

a frameshift variant that apparently generates a new gene,

IFNL4, encoding a putative IFN-l4 protein (Prokunina-

Olsson 2013). The mechanisms by which IFN-l4 may

impair HCV clearance remain to be deciphered.
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The Search for Missing Heritability

GWAS has made it possible to identify common vari-

ants with modest effects at hundreds of loci, for a number

of common diseases, including inflammatory and auto-

immune diseases (Visscher et al. 2012). However, even at

its most successful, such as when applied to CD and to

inflammatory diseases in general, the loci identified by

this approach account for only a small proportion of the

variance of disease risk (e.g., 13.6.% in CD [Casanova

and Abel 2009; Smith et al. 2009; Jostins et al. 2012]).

This has led to the concept of “missing heritability”

(Manolio et al. 2009) and to the development of several

non-mutually exclusive hypotheses that might account for

this phenomenon (Table 2). One of these explanations,

the existence of rare disease-causing variants, is appeal-

ing for at least two reasons: (1) conceptually, as rare var-

iants bridge the gap between Mendelian and complex

inheritance and largely correspond to the major gene no-

tion (Alcais et al. 2009a, 2010), and (2) experimentally, as

these variants can now be tested by NGS (Cirulli and

Goldstein 2010). One recent study reported a negligible

impact of rare variants located in the exons of 25 risk

genes previously identified by GWASs in �25,000 pa-

tients with six autoimmune and/or inflammatory diseases

(Hunt et al. 2013). A more successful use of this approach

resulted in the demonstration that the DCTN4 gene influ-

enced Pseudomonas aeruginosa infection in patients with

cystic fibrosis (Emond et al. 2012). This discovery was

based on WES in patients with “extreme phenotypes” (43

patients with the earliest onset of infection vs. 48 patients

with the latest onset of infection). The search for missing

heritability is, undoubtedly, a major challenge in this

field.

EVOLUTIONARY GENETICS IN HUMANS

General Concepts and Methods

Evolutionary or population genetics is another approach

that provides invaluable immunological information and

involves analysis of the distribution, in human popula-

tions, of alleles at loci known or presumed to be involved

in host defense and/or self-tolerance, and the comparison

of this distribution with that in other species, including

primates in particular. If we wish to understand immuno-

logical heterogeneity, both between individuals and be-

tween populations, we can investigate the way in which

natural selection has acted on host genes over time, by

determining the current patterns of variability in the gene-

ral population (individuals not chosen for study on the

basis of a particular disease phenotype) (Sabeti et al.

2006; Quintana-Murci et al. 2007; Barreiro and Quinta-

na-Murci 2010; Quintana-Murci and Clark 2013). Con-

temporary humans are the descendants of people who

survived multiple threats, including those posed by mi-

crobes (a greater threat than war, predation, and famine)

(Cairns 1997). “Natural” conditions have changed, partic-

ularly in western countries, but modern medicine, intro-

duced at the start of the 20th century (“yesterday” from an

evolutionary standpoint), has not yet had time to affect the

pattern of population genetic diversity. If human adapta-

tion to microbial pressure has a genetic basis, it will be

engraved in our genomes, so evolutionary genetics can

quantify the action of selection on host genes (Sabeti

et al. 2006; Nielsen et al. 2007). Numerous studies have

searched for the footprints of selection at the GW level and

identified immunity-related genes among those most

strongly targeted by selection, in its different forms and

intensities (Bustamante et al. 2005; Voight et al. 2006;

Sabeti et al. 2007; Barreiro et al. 2008; Pickrell et al.

2009; Grossman et al. 2013). Purifying selection removes

deleterious alleles from the population, whereas positive

and balancing selection favor increases in the population

frequency of advantageous variants and the maintenance

of polymorphism, respectively (Table 3). Each type of

selection leaves a distinctive molecular signature around

the genomic region targeted, and these signatures can be

detected by various statistical approaches (Nielsen 2005;

Sabeti et al. 2006; Nielsen et al. 2007). On the basis of

these signatures, population genetics theory can be used to

infer the relative biological contributions of different clas-

ses of immunity genes to host defense in natura.

Maintaining the Status Quo: Essentiality

Selection often results in maintenance of the status quo,

by eliminating genetic variants with an impact on protein

function that may compromise organism fitness. Genes

subject to strong purifying selection, for which mutations

are highly deleterious for the carrier, generally display a

major deficit of amino-acid altering mutations. This is the

case, for example, for a number of genes encoding innate

immunity molecules, such as endosomal TLRs and most

of the NALP members of the NLR family (Barreiro et al.

2009; Wlasiuk and Nachman 2010; Vasseur et al. 2012),

Table 2. A selection of genetic hypotheses possibly accounting
for missing heritability in inflammatory and infectious diseases

Masked genetic effect Methods of investigation

Causal common variants not
identified

Dense targeted sequencing of
disease-associated regions and
functional studies

Other common variants with
weaker effect not identified

Increase population sample size
and conduct large meta-
analyses

Rare variants with stronger
effect not identified

Next-generation sequencing
focusing on specific kindreds
(multiplex) and phenotypes
(extreme).

“Structural” variants not
identified (e.g., copy
number variants)

Specific analysis of high-
throughput genotyping and
sequencing data

Gene � gene interaction and
epistasis

Development of specific
methods of analysis

Gene � environment
interaction

Assessment of environmental
risk factors (e.g., microbiome),
study of specific subpop-
ulations (e.g., early age of
onset)

The missing heritability may also be a consequence of confounding
factors, such as phenocopies (i.e., a patient falsely attributed a disease
phenotype), undetermined environmental triggers (i.e., apparent con-
cordance resulting from a shared environmental trigger), and epigenetic
influences (e.g., parental imprinting).
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adaptors such as MYD88 and TRIF (Nakajima et al. 2008;

Fornarino et al. 2011), or effector molecules, such as a

subset of IFN-a/b and IFN-g (Manry et al. 2011). This

attests to the unique, essential nature of the mechanisms—

immunological or otherwise—involved. Furthermore,

variation in genes evolving under strong purifying selec-

tion would be expected to lead to severe, highly penetrant

and even Mendelian disorders. This prediction is support-

ed by GW population studies, as genes associated with

Mendelian disease are enriched in signs of purifying se-

lection (Bustamante et al. 2005; Barreiro et al. 2008;

Blekhman et al. 2008), particularly when the disease-

causing alleles are dominant by haploinsufficiency (e.g.,

RPSA mutations in patients with congenital asplenia)

(Bolze et al. 2013). Clinical genetic studies also support

this notion, as rare mutations underlying life-threatening

diseases have been found in highly constrained genes and

pathways. For example, mutations in the TLR3-TRIF,

TIR-MYD88, and IFN-g pathways have been associated

with life-threatening infections during childhood: HSV-1

encephalitis (Zhang et al. 2007, 2013; Guo et al. 2011;

Sancho-Shimizu et al. 2011), pyogenic bacterial infec-

tions (Picard et al. 2003, 2010; Ku et al. 2007; von Bernuth

et al. 2008), and MSMD (Jouanguy et al. 1996; Newport

et al. 1996; Casanova and Abel 2002; Bogunovic et al.

2012), respectively. Similarly, mutations of the NALP3

and RPSA genes have been associated with severe inflam-

matory disease (Hoffman et al. 2001; Aganna et al. 2002;

Strowig et al. 2012) and invasive bacterial disease due to

congenital asplenia (Bolze et al. 2013), respectively.

Relaxing the Constraints: Immunological

Redundancy

Purifying selection acts less strongly on mildly delete-

rious mutations, which can be tolerated and may even

increase in frequency in the population, depending on

the extent to which they are deleterious to host survival.

Genes evolving under weaker selective constraints (i.e.,

weak negative selection) tend to be involved in more re-

dundant mechanisms than strongly constrained genes

(those under strong purifying selection) (Quintana-Murci

and Clark 2013). For example, among the innate immu-

nity sensors responsible for detecting nucleic acids, the

weaker constraints characterizing the three members of

the RIG-I-like receptor (RLR) family than endosomal

TLRs suggest that there is some degree of redundancy

for RLR-mediated antiviral immunity (Barreiro et al.

2009; Wlasiuk and Nachman 2010; Vasseur et al. 2011).

Furthermore, variation in genes evolving under relaxed

constraints would be expected to have milder effects on

host phenotype. At the GW level, purifying selection

tends to be weaker for “complex” disease genes than for

“Mendelian” disease genes (Di Rienzo 2006; Kryukov

et al. 2007; Blekhman et al. 2008; Alcais et al. 2010). In

some cases, the constraint may be relaxed completely, and

the population frequency of mutations with an impact on

protein function can increase freely under conditions of

strict neutrality, demonstrating the highest levels of im-

munological redundancy. This is the case for genes such

as MBL2, TLR5, and TLR10, for which the frequency of

loss-of-function mutations is high at population level (up

to 25%, depending on the population), indicating that dis-

tinct immunological mechanisms may confer sufficient

protection against infection in the absence of these genes

(Verdu et al. 2006; Walsh et al. 2006; Barreiro et al. 2009;

Wlasiuk et al. 2009). In other cases, gene loss may even be

advantageous to the host (MacArthur et al. 2012; Quinta-

na-Murci 2012), according to the “less-is-more” hypoth-

esis, as illustrated by the high population frequencies

of loss-of-function mutations of genes such as DARC,

CASP12, or some leukocyte Ig-like receptor genes (Ham-

blin et al. 2002; Xue et al. 2006; Hirayasu et al. 2008),

owing to their protective effects against infection.

Favoring Advantageous Variation: Improving

Gene Function

The detection of positive and balancing selection

makes it possible to define more dynamic immunological

Table 3. Different forms of natural selection and their relation to immunity and disease

Form of selection Molecular signatures Immunological function/relevance Expected phenotype

Purifying/negative
selection

Low functional (nonsynonymous)
diversity

Essential, nonredundant Rare, severe disorders

Overall reduction in diversity
Excess of rare alleles

Positive selection High functional (nonsynonymous)
diversity

Advantage for a new (improved)
function

Rare or common disorders

Overall reduction in diversity Flexible immunological mechanisms Mostly complex
predisposition

Long-range haplotypes/homozygosity
Increased population differences

Balancing selection Maintenance of polymorphism Advantage for protein variability Rare or common disorders
Increased heterozygosity Flexible immunological mechanisms Mostly complex

predisposition
Decreased population differences

Each form of selection leaves a specific molecular signature around the genomic region targeted, which can be detected by an increasing number of
statistical methods (Nielsen et al. 2007, for a thorough review). Depending on the intensity and form of selection in place, population genetics can provide
useful information about the function and relative biological relevance of immunity-related genes as well as predict the mode in which these genes may
contribute to disease. The expected phenotypes represent the general trends observed, but note that they are not exclusive (e.g., positive selection can also
increase the frequency of mutations exerting a protective and almost Mendelian effect against infections) (Quintana-Murci and Barreiro 2010).
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mechanisms, variations of which have been beneficial to

the host over different evolutionary timescales. Recent

data indicate that long-term balancing selection (i.e., a

heterozygote advantage that has persisted across species)

has occurred not only at the well-known HLA locus, but

also at other immunity-related loci, such as the membrane

glycoprotein, ABO blood group, or TRIM5 genes (Klein

et al. 1993; Cagliani et al. 2010; Segurel et al. 2012; Lef-

fler et al. 2013). Humans may also have acquired advan-

tageous variants through admixture with other hominids,

such as Neandertals or Denisovans, as reported for some

HLA alleles (Abi-Rached et al. 2011). Human popula-

tions maintain unexpectedly high levels of genetic diver-

sity at some immunity-related loci, due to the effects of

balancing selection (Parham and Moffett 2013). A strik-

ing example is provided by Amerindian populations,

which, despite presenting the lowest level of GW genetic

diversity worldwide, have retained high levels of diversity

for the HLA and KIR genes, attesting to the advantage of

variation at these loci for survival (Gendzekhadze et al.

2009; Parham et al. 2012). In cases of more recent selec-

tion or of selection restricted to specific populations, the

advantage conferred depends on more recent environmen-

tal variables, which may be pathogen-related. Indeed, sev-

eral studies have shown that pathogen-driven selection has

shaped local adaptation of the HLA, blood group antigen

and interleukin genes, and the genes encoding their recep-

tors (Prugnolle et al. 2005; Fumagalli et al. 2009a,b,

2011). Selection can increase the frequency of some mu-

tations exerting a protective, strong, in some cases almost

Mendelian effect against various infections (Quintana-

Murci and Barreiro 2010). Notable examples are provided

by the HbS heterozygotes in Africa, independent G6PD-

deficiency variants worldwide, the DARC null allele in

Africa, and the various FUT2 deficiency alleles in differ-

ent populations (Allison 1954; Tishkoff et al. 2001; Ham-

blin et al. 2002; Saunders et al. 2002; Ferrer-Admetlla

et al. 2009; Louicharoen et al. 2009). Selection can also

increase the frequency of alleles associated with complex

traits or diseases, such as the TLR1 I602S hyporesponsive-

ness mutation in Europe (Hawn et al. 2007; Johnson et al.

2007; Barreiro et al. 2009; Pickrell et al. 2009), suggesting

that there may be an advantage associated with weak

TLR1-mediated responses, or with various mutations of

the four type III IFN genes in Europeans and Asians

(Manry et al. 2011), some of which have been associated

with the clearance of HCV infection (Ge et al. 2009; Tho-

mas et al. 2009; Prokunina-Olsson et al. 2013). The match

between the selected variants of some genes and their

known associations with phenotypic variation provides

proof-of-concept for the predictive value of population

genetics, particularly for evaluating the disease impli-

cations of other, uncharacterized variants targeted by

selection.

Side Effects of Past Selection

Past selection, leading to higher resistance to infection,

may, in some cases, result in maladaptation and immune

dysfunction, such as autoimmunity and inflammation.

The introduction of hygiene and medical interventions

has decreased the pathogen pressure exerted on modern

human societies. In this context, the controversial “hy-

giene hypothesis” states that a decrease in the diversity

of microbes we are exposed to (both pathogens and com-

mensals) has led to an imbalance in the immune response,

potentially promoting chronic inflammation (Sironi and

Clerici 2010). It has been suggested that the underlying

mechanism may involve an imbalance between helper T

cells of the “Th1” and “Th2” classes (Szabo et al. 2003;

Pulendran and Artis 2012). Population genetics has pro-

vided additional support for this hypothesis, as several

immunity-related genes, variants of which confer a higher

risk of inflammatory bowel disease, celiac disease, T1D,

MS, or psoriasis, have been targeted by positive selection

(Fumagalli et al. 2009a; Barreiro and Quintana-Murci

2010; Sironi and Clerici 2010; Raj et al. 2013). The higher

frequency of alleles conferring greater susceptibility to

some of these diseases in populations exposed to high

microbial/viral loads, as documented for risk alleles of

IL18RAP, IL18R1, IL23, or IL18R1 for inflammatory

bowel disease or celiac disease, suggests that these vari-

ants play an otherwise beneficial protective role in host

defense (Sironi and Clerici 2010). Perhaps the most

straightforward example is that of celiac disease. Popula-

tion genetic and functional analyses have shown that sev-

eral celiac disease risk alleles of genes such as IL12A,

IL18RAP, and SH2B3 have been subjected to positive

selection and that individuals carrying these alleles ben-

efit from protection against some infections (Barreiro and

Quintana-Murci 2010; Zhernakova et al. 2010; Abadie

et al. 2011). Further clinical and epidemiological genetic

studies are required, but, overall, population genetic stud-

ies support the notion that the current increase in the in-

cidence of autoimmune and inflammatory disorders may

be at least partly due to past adaptation, strengthening

immune responses to combat infectious agents (Sironi

and Clerici 2010).

CONCLUSION

Human genetic studies make use of experiments of Na-

ture. The scale is impressive, with the world population

steadily increasing and having already reached seven bil-

lion individuals, all of whom are genetically unique and

exposed to a tremendously variable and changing envi-

ronment. The depth is also impressive, as these individu-

als are constantly “phenotyped” by clinicians and can be

studied in much more detail in the course of a study, if

required. This approach is particularly powerful in immu-

nology, especially as concerns immunity to infection and

self-tolerance, the two pillars of immunology. With only

about 20,000 protein-encoding genes, many more iso-

forms, and about 20,000 RNA-encoding genes, and mu-

tation rate for nucleotide substitution in the germline of

1029 (on top of other types of mutation), complete dis-

section of the function of most, if not all of the genes

involved in immunity is feasible. Whereas WES can

detect variations in only 1%–2% of the genome, WGS

has the potential to detect mutations in the remaining,
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intergenic space, which may possibly enlighten its func-

tions. We will undoubtedly witness a flurry of discoveries

of single-gene inborn errors of immunity in the coming

years. In genetic epidemiology, studies aiming to increase

phenotypic homogeneity will probably identify genetic

contributions that are stronger than those usually found

in GWASs. Population genetics, which has mostly fol-

lowed a gene-centered approach, with the examination

of genes in isolation, will adopt an interactome approach,

trying to determine how multiple genes, each contributing

modestly to the study phenotype (benign or disease-relat-

ed), interact with each other and contribute to phenotypic

variation (e.g., the Human Gene Connectome) (Itan et al.

2013). One major challenge will be the integrated analysis

of all these different sources of genomic information,

carefully taking into account context (tissue)-specific ef-

fects (Hawkins et al. 2010; Knight 2013). In this context,

the iPSC technology can be used to study almost any

human cell type from any patient, including nonhemato-

poietic cells not otherwise studied in humans (Lafaille

et al. 2012; Takahashi and Yamanaka 2013). The study

of tissue-specific immunity, which is probably altered in

tissue-specific infection or autoimmunity, is particularly

appealing. As shown here, human genetics has already

taught us a great deal about immunology. We firmly be-

lieve that, in the era of NGS and iPSC, human genetics is

an exciting frontier that is bound to teach us much more

about immunology.
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