Figure 2: Distribution of the successful TSs localized for each of the 6 runs [component]

We present a method for the automatic determination of transition states (TSs) that is based on Grimme's RMSD-PP semiempirical tight binding reaction path method (J. Chem. Theory Comput. 2019, 15, 2847-2862, where the maximum energy structure along the path serves as an initial guess for DFT TS searches. The method is tested on 100 elementary reactions and located a total of 89 TSs correctly. Of the 11 remaining reactions, nine are shown not to be elementary reactions after all and for one of
more » ... e two true failures the problem is shown to be the semiempirical tight binding model itself. Furthermore, we show that the GFN2-xTB RMSD-PP barrier is a good approximation for the corresponding DFT barrier for reactions with DFT barrier heights up to about 30 kcal/mol. Thus, GFN2-xTB RMSD-PP barrier heights, which can be estimated at the cost of a single energy minimisation, can be used to quickly identify reactions with low barriers, although it will also produce some false positives. Subjects Theoretical and Computational Chemistry, Physical Chemistry (other) Keywords Transition states How to cite this article Rasmussen MH, Jensen JH. 2020. Fast and automatic estimation of transition state structures using tight binding quantum chemical calculations. PeerJ Physical Chemistry 2:e15 http://doi.
doi:10.7717/peerjpchem.15/fig-2 fatcat:347k2auj4vetdhfd6qlwv6dohe