The impact of vaccinating adolescents and children on COVID-19 disease outcomes [article]

Kylie E. C. Ainslie, Jantien A. Backer, Pieter de Boer, Albert Jan van Hoek, Don Klinkenberg, Hester Korthals Altes, Ka Yin Leung, Hester de Melker, Fuminari Miura, Jacco Wallinga
2021 medRxiv   pre-print
Despite the high COVID-19 vaccination coverage among adults, there is concern over a peak in SARS-CoV-2 infections in the coming months. To help ensure that healthcare systems are not overwhelmed in the event of a new wave of SARS-CoV-2 infections, many countries have extended vaccination to adolescents (those aged 12-17 years) and may consider further extending to children aged 5-11 years. However, there is considerable debate about whether or not to vaccinate healthy adolescents and children
more » ... gainst SARS-CoV-2 because, while vaccination of children and adolescents may limit transmission from these groups to other, more vulnerable groups, adolescents and children themselves have limited risk of severe disease if infected and may experience adverse events from vaccination. To quantify the benefits of extending COVID-19 vaccination beyond adults we compare daily cases, hospital admissions, and intensive care (IC) admissions for vaccination in adults only, those 12 years and above, and those 5 years and above. Methods and Findings: We developed a deterministic, age-structured susceptible-exposed-infectious-recovered (SEIR) model to simulate disease outcomes (e.g., cases, hospital admissions, IC admissions) under different vaccination scenarios. The model is partitioned into 10-year age bands (0-9, 10-19, ..., 70-79, 80+) and accounts for differences in susceptibility and infectiousness by age group, seasonality in transmission rate, modes of vaccine protection (e.g., infection, transmission), and vaccine characteristics (e.g., vaccine effectiveness). Model parameters are estimated by fitting the model piecewise to daily cases from the Dutch notification database Osiris from 01 January 2020 to 22 June 2021. Forward simulations are performed from 22 June 2021 to 31 March 2022. We performed sensitivity analyses in which vaccine-induced immunity waned. We found that upon relaxation of all non-pharmaceutical control measures a large wave occurred regardless of vaccination strategy. We found overall reductions of 5.7% (4.4%, 6.9%) of cases, 2.0% (0.7%, 3.2%) of hospital admissions, and 1.7% (0.6%, 2.8%) of IC admissions when those 12 years and above were vaccinated compared to vaccinating only adults. When those 5 years and above were vaccinated we observed reductions of 8.7% (7.5%, 9.9%) of cases, 3.2% (2.0%, 4.5%) of hospital admissions, and 2.4% (1.2%, 3.5%) of IC admissions compared to vaccination in adults only. Benefits of extending vaccination were larger within the age groups included in the vaccination program extension than in other age groups. The benefits of vaccinating adolescents and children were smaller if vaccine protection against infection, hospitalization, and transmission (once infected) wanes. Discussion: Our results highlight the benefits of extending COVID-19 vaccination programs beyond adults to reduce infections and severe outcomes in adolescents and children and in the wider population. A reduction of infections in school-aged children/adolescents may have the added benefit of reducing the need for school closures during a new wave. Additional control measures may be required in future to prevent a large wave despite vaccination program extensions. While the results presented here are based on population characteristics and the COVID-19 vaccination program in The Netherlands, they may provide valuable insights for other countries who are considering COVID-19 vaccination program extensions.
doi:10.1101/2021.10.21.21265318 fatcat:62uetydadjclhlxngp56jnhrgi