Phosphate Removal from Secondary Effluents Using Coal Gangue Loaded with Zirconium Oxide

Jibing Xiong, Li Zang, Jianfeng Zha, Qaisar Mahmood, Zhenli He
2019 Sustainability  
Phosphorus from secondary effluents and coal gangue from coal mining have caused serious environmental problems. The feasibility of phosphate removal from secondary effluents using calcinated coal gangue loaded with zirconium oxide (CCG-Zr) was explored. Major influencing factors like the calcinated temperature, CCG-Zr ratio, adsorbent dose, time and solution pH, etc. were investigated. Newly developed CCG-Zr accomplished a significantly higher phosphate removal for phosphate (93%) compared
more » ... (93%) compared with CCG (35%) at a calcinated temperature of 600 °C and CCG-Zr mass ratio of 1:1. For CCG-Zr the maximum phosphate removal rate (93%) was noted at an initial phosphate concentration of 2 mg/L within 20 min. The CCG-Zr displayed a higher phosphate removal rate (85–98%) over a wide range of solution pH (2.5~8.5). The adsorption isotherms fitted better to the Freundlich (R2 = 0.975) than the Langmuir model (R2 = 0.967). The maximum phosphate adsorption capacity of the CCG-Zr was 8.55 mg/g. These results suggested that the CCG-Zr could potentially be applied for the phosphate removal from secondary effluents.
doi:10.3390/su11092453 fatcat:vafzl5pzvjho5nmkjv5xzamqxa