A Map of Protein-rRNA Distribution in the 70 SEscherichia coliRibosome

Dmitri I. Svergun, Knud H. Nierhaus
2000 Journal of Biological Chemistry  
Neutron scattering exploits the enormous scattering difference between protons and deuterons. A set of 42 x-ray and neutron solution scattering curves from hybrid Escherichia coli ribosomes was obtained, where the proteins and rRNA moieties in the subunits were either protonated or deuterated in all possible combinations. This extensive data set is analyzed using a novel method. The volume defined by the cryoelectron microscopic model of Frank and co-workers (. (1995) Nature 376, 441-444) is
more » ... ided into 7890 densely packed spheres of radius 0.5 nm. Simulated annealing is employed to assign each sphere to solvent, protein, or rRNA moieties to simultaneously fit all scattering curves. Twelve independent reconstructions starting from random approximations yielded reproducible results. The resulting model at a resolution of 3 nm represents the volumes occupied by rRNA and protein moieties at 95% probability threshold and displays 15 and 20 protein subvolumes in the 30 S and 50 S, respectively, connected by rRNA. 17 proteins with known atomic structure can be tentatively positioned into the protein subvolumes within the ribosome in agreement with the results from other methods. The protein-rRNA map enlarges the basis for the models of the rRNA folding and can further help to localize proteins in high-resolution crystallographic density maps.
doi:10.1074/jbc.275.19.14432 pmid:10799526 fatcat:iompv27kzba6ja626oldvfn3ca